Breaking Type Safety in Go:.

An empirical study on the use of the
unsafe package

>\ '
-

T 'S 7/‘ &T 3
Diego Elias Costa, Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab




The Go programming language =GO

* Major programming language
 Clean syntax *

» C-like performance
* Modern language features kubernetes docker

* Go has a strong and static type-system
* Type-safe by design



Type-safety in GO

func main() {
var i1 int = 5
var f float64 = 3.66

invalid operation: i+ f
(mismatched types int and float64)

fmt.Println(i + f)



Type-safety in GO

func main() {
var 1 int =5
var f float64 = 3.66

fmt.Println(float64(i) + f) V



Go Is type-safe...

...unless you use the unsafe package



The unsafe package

« Step around the type-safety of Go programs

import

// Pointer arithmetic - (C-style)
p = unsafe.Pointer(uintptr(p) + offset)

// Convert between two types (without compiler checks)
func Float64bits(f float64) uinted {
return *(*uint64) (unsafe.Pointer(&f))

¥



The unsafe package

Pros cons

* Avoid compiler checks * Avoid compiler checks

* Low-level memory  Risk of non-portability
manipulation

* No guarantees of compatibility

* Interface with system calls » Easy to write bad code

COMES GREAT
RESPONSIBILITY.




Beware of the unsafe package!

With the unsafe package there are no guarantees. encoding/gob: can it avoid unsafe? #5159

(GL= TNl robpike opened this issue on Mar 29, 2013 - 5 comments

— “Go Proverbs” by Rob Pike
[go-nuts] Possible misuse of unsafe.Pointer
Daniel Eloff( ¥
I Warning: Avoid unsafe like the plague; if you can help it. I Jul 15, 2015 at 2:56 pm

Can someone plaase verify if my understanding around conversions batween
uintptr and unsafe.Pointer is comect?

: i : z |
Never use unsafe. Performance is never that critical. — Volker Nov 27 "15 at 10:31

First of all, unsafe is usually a bad idea. So is reflection, but unsafe is at least an order of magnitude
worse.

6 Here is your example using pure reflection (http:/play.golang.org/p/iTJEMhg8q9):




Beware of the unsafe package!

Do Go developers use the unsafe package?




Studying breaking type-safety in Go

Prevalence? Why? Consequences?

10



Studied projects

2590 most popular

Go software projects

GitHub

9

Cockroach ps

. m @ Syncthing

kubernetes

€D influxdb

moby

project

11



Do developers use unsafe?

. 24% of projects use

unsafe in their code

12



What domain of projects rely on unsafe?

Bindings 88%
Blockchain

ML Libraries

User Interface
Database

All
domains

Multimedia B 8%

% Projects
using unsafe 13

Security = 12% 100%

v



Why developers use unsafe?

We sample 270
projects from the
598 that use unsafe

// Pointer arithmetic - (C-style)
p = unsafe.Pointer(uintptr(p) + offset)

// Convert between two types (without compiler
checks)

func Float64dbits(f float64) uinted {

return *(*uint64)(unsafe.Pointer(&f))
}

Manually classify
unsafe usages

Pointer arithmetic

Casting

14



Why developers use unsafe?

T e I Qi
Efficient Casting 0
Atomic Operations ~30% Performance
Pointer Arithmetic _
Reflection ) Go
Inspecting Object Size ~25% | Others

/

% of Usages (sampled,) .



Consequences of unsafe

We look at the pull
requests of the 598
projects that use
unsafe

16



Consequences of unsafe

Deployment restriction (20 projects)

removed usage of package "unsafe" to allow Google App Engine compatibility
#69

m jkearse3 wants to merge 1 commit into tidw nast from

“l wanted to use this package within a Google App Engine project, and due to
package “unsafe” being used, it is not compatible”

17



Consequences of unsafe

Deployment restriction (20 projects)
Runtime errors (16 projects)

Prometheus crashes and hangs on fatal error: found bad pointer in Go heap
(incorrect use of unsafe or cgo?) #2263

E"Clﬁﬂd ichekrygin opened this issue on Dec 7, 2016 - 9 comments

Usafe use of unsafe that leads to data corruption #3 |

@Oosed rvasily opened this issue on Apr 26, 2018 - 3 comments

18



Consequences of unsafe

Deployment restriction (20 projects)
Runtime errors (16 projects)
Wrong API usage (13 projects)

invalid use of unsafe.Pointer #18

@;l:hlld Wessie opened this issue on May 1, 2015 - 2 comments

[security] incorrect unsafe usage potentially exposes prior request parameters
#277

(GXCTT I cstockton opened this issue on Oct 21, 2017 - 5 comment

...and the list goes on

19



Consequences of unsafe

o :
LlsPOinter arithmetic B 6'3A’ of projects that

ptraddr (= uintptr(p) use unsafe have Invalid
p'=runsafe.Pointer(ptaddr + offset) . .
Pointer conversions

GC can release ptraddr in the middle
of the operation!

20



To summarize

Prevalence? Why?
System
24% of Integration
projects use
unsafe Performance

Optimization

Consequences?

Higher risk of

Restrictions
Runtime errors
Bugs
Breakages

21



Feedback from the Go Team

Other team members were more optimistic that developers would
avoid or could implement their project without using package unsafe.

| think this result will justify spending more time on making package
unsafe easier to use. , ’

Matthew Dempsky, maintainer of the GO compiler

22



Impact on the GO Language

New static analysis was released with Go 1.16

cmd/vet: warn about variables/values of type reflect.{Slice,String}Header #4070

° ° (G4 LN mdempsky opened this issue on Aug 11, 2020 - 21 commants
Wrong slice conversion —

is one of the most
common APl misuses

Language updates scheduled for Go 1.17

unsafe: add Slice(ptr *T, len anyintegerType) [JT #1936/ }

unsafe: add Add function #4048
r&¢ opened this issue on Jul 28, 2020 - 27 comments

23



To summarize

Prevalence? Why?

System
24% of Integration

projects use

unsafe Performance

Optimization

Consequences?

Higher risk of

Impact on the GO Language

Restrictions
Runtime errors
Bugs
Breakages

New static analysis was released with Go 1.16

cmd/vet: warn about variables/values of type reflect.{Slice, String}Header #40701

. . (BCM mdempsky opened this issue on Aug 11, 20!
Wrong slice conversion

is one of the most
common APl misuses

Language updates scheduled for Go 1.17

Go 1.17 unsafe:add Slice(ptr *T, len anyIntegerType) [IT #19367

JOL) mdempsky ope:

unsafe: add Add function #40

481

-
I e B

FTIR IO T I R i

A I N TR LN .=

M T, uMT.
(L e T T T

(TR e B ShE

, @DiegoEliasCosta
@ diego.costa@concordia.ca

24



To summarize

Prevalence? Why? Consequences?
o System | Higher risk of
24% of Integration - Restrictions
projects use - Runtime errors
unsafe Performance - Bugs

Optimization - Breakages

25



	Slide 1: Breaking Type Safety in Go: An empirical study on the use of the unsafe package
	Slide 2: The Go programming language
	Slide 3: Type-safety in GO
	Slide 4: Type-safety in GO
	Slide 5: Go is type-safe…
	Slide 6: The unsafe package
	Slide 7: The unsafe package
	Slide 8: Beware of the unsafe package!
	Slide 9: Beware of the unsafe package!
	Slide 10: Studying breaking type-safety in Go
	Slide 11: Studied projects
	Slide 12: Do developers use unsafe?
	Slide 13: What domain of projects rely on unsafe?
	Slide 14: Why developers use unsafe?
	Slide 15: Why developers use unsafe?
	Slide 16: Consequences of unsafe
	Slide 17: Consequences of unsafe
	Slide 18: Consequences of unsafe
	Slide 19: Consequences of unsafe
	Slide 20: Consequences of unsafe 
	Slide 21: To summarize
	Slide 22: Feedback from the Go Team
	Slide 23: Impact on the GO Language
	Slide 24
	Slide 25: To summarize

