Breaking Type Safety in Go:.

An empirical study on the use of the
unsafe package

>\ '
-

T 'S 7/‘ &T 3
Diego Elias Costa, Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab




The Go programming language =GO

* Major programming language
 Clean syntax *

» C-like performance
* Modern language features kubernetes docker

* Go has a strong and static type-system
* Type-safe by design



Type-safety in GO

func main() {
var i1 int = 5
var f float64 = 3.66

invalid operation: i+ f
(mismatched types int and float64)

fmt.Println(i + f)



Type-safety in GO

func main() {
var 1 int =5
var f float64 = 3.66

fmt.Println(float64(i) + f) V



Go Is type-safe...

...unless you use the unsafe package



The unsafe package

« Step around the type-safety of Go programs

import

// Pointer arithmetic - (C-style)
p = unsafe.Pointer(uintptr(p) + offset)

// Convert between two types (without compiler checks)
func Float64bits(f float64) uinted {
return *(*uint64) (unsafe.Pointer(&f))

¥



The unsafe package

Pros cons

* Avoid compiler checks * Avoid compiler checks

* Low-level memory  Risk of non-portability
manipulation

* No guarantees of compatibility

* Interface with system calls » Easy to write bad code

COMES GREAT
RESPONSIBILITY.




Beware of the unsafe package!

With the unsafe package there are no guarantees. encoding/gob: can it avoid unsafe? #5159

(GL= TNl robpike opened this issue on Mar 29, 2013 - 5 comments

— “Go Proverbs” by Rob Pike
[go-nuts] Possible misuse of unsafe.Pointer
Daniel Eloff( ¥
I Warning: Avoid unsafe like the plague; if you can help it. I Jul 15, 2015 at 2:56 pm

Can someone plaase verify if my understanding around conversions batween
uintptr and unsafe.Pointer is comect?

: i : z |
Never use unsafe. Performance is never that critical. — Volker Nov 27 "15 at 10:31

First of all, unsafe is usually a bad idea. So is reflection, but unsafe is at least an order of magnitude
worse.

6 Here is your example using pure reflection (http:/play.golang.org/p/iTJEMhg8q9):




Beware of the unsafe package!

Do Go developers use the unsafe package?




Studying breaking type-safety in Go

Prevalence? Why? Consequences?
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Studied projects

2590 most popular

Go software projects

GitHub

9

Cockroach ps

. m @ Syncthing

kubernetes

€D influxdb

moby

project
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Do developers use unsafe?

. 24% of projects use

unsafe in their code
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What domain of projects rely on unsafe?

Bindings 88%
Blockchain

ML Libraries

User Interface
Database

All
domains

Multimedia B 8%

% Projects
using unsafe 13

Security = 12% 100%
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Why developers use unsafe?

We sample 270
projects from the
598 that use unsafe

// Pointer arithmetic - (C-style)
p = unsafe.Pointer(uintptr(p) + offset)

// Convert between two types (without compiler
checks)

func Float64dbits(f float64) uinted {

return *(*uint64)(unsafe.Pointer(&f))
}

Manually classify
unsafe usages

Pointer arithmetic

Casting
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Why developers use unsafe?

T e I Qi
Efficient Casting 0
Atomic Operations ~30% Performance
Pointer Arithmetic _
Reflection ) Go
Inspecting Object Size ~25% | Others

/

% of Usages (sampled,) .



Consequences of unsafe

We look at the pull
requests of the 598
projects that use
unsafe
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Consequences of unsafe

Deployment restriction (20 projects)

removed usage of package "unsafe" to allow Google App Engine compatibility
#69

m jkearse3 wants to merge 1 commit into tidw nast from

“l wanted to use this package within a Google App Engine project, and due to
package “unsafe” being used, it is not compatible”
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Consequences of unsafe

Deployment restriction (20 projects)
Runtime errors (16 projects)

Prometheus crashes and hangs on fatal error: found bad pointer in Go heap
(incorrect use of unsafe or cgo?) #2263

E"Clﬁﬂd ichekrygin opened this issue on Dec 7, 2016 - 9 comments

Usafe use of unsafe that leads to data corruption #3 |

@Oosed rvasily opened this issue on Apr 26, 2018 - 3 comments
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Consequences of unsafe

Deployment restriction (20 projects)
Runtime errors (16 projects)
Wrong API usage (13 projects)

invalid use of unsafe.Pointer #18

@;l:hlld Wessie opened this issue on May 1, 2015 - 2 comments

[security] incorrect unsafe usage potentially exposes prior request parameters
#277

(GXCTT I cstockton opened this issue on Oct 21, 2017 - 5 comment

...and the list goes on
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Consequences of unsafe

o :
LlsPOinter arithmetic B 6'3A’ of projects that

ptraddr (= uintptr(p) use unsafe have Invalid
p'=runsafe.Pointer(ptaddr + offset) . .
Pointer conversions

GC can release ptraddr in the middle
of the operation!
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To summarize

Prevalence? Why?
System
24% of Integration
projects use
unsafe Performance

Optimization

Consequences?

Higher risk of

Restrictions
Runtime errors
Bugs
Breakages
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Feedback from the Go Team

Other team members were more optimistic that developers would
avoid or could implement their project without using package unsafe.

| think this result will justify spending more time on making package
unsafe easier to use. , ’

Matthew Dempsky, maintainer of the GO compiler
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Impact on the GO Language

New static analysis was released with Go 1.16

cmd/vet: warn about variables/values of type reflect.{Slice,String}Header #4070

° ° (G4 LN mdempsky opened this issue on Aug 11, 2020 - 21 commants
Wrong slice conversion —

is one of the most
common APl misuses

Language updates scheduled for Go 1.17

unsafe: add Slice(ptr *T, len anyintegerType) [JT #1936/ }

unsafe: add Add function #4048
r&¢ opened this issue on Jul 28, 2020 - 27 comments
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To summarize

Prevalence? Why?

System
24% of Integration

projects use

unsafe Performance

Optimization

Consequences?

Higher risk of

Impact on the GO Language

Restrictions
Runtime errors
Bugs
Breakages

New static analysis was released with Go 1.16

cmd/vet: warn about variables/values of type reflect.{Slice, String}Header #40701

. . (BCM mdempsky opened this issue on Aug 11, 20!
Wrong slice conversion

is one of the most
common APl misuses

Language updates scheduled for Go 1.17

Go 1.17 unsafe:add Slice(ptr *T, len anyIntegerType) [IT #19367

JOL) mdempsky ope:

unsafe: add Add function #40
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To summarize

Prevalence? Why? Consequences?
o System | Higher risk of
24% of Integration - Restrictions
projects use - Runtime errors
unsafe Performance - Bugs

Optimization - Breakages
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