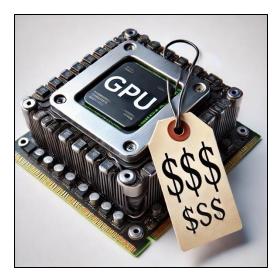


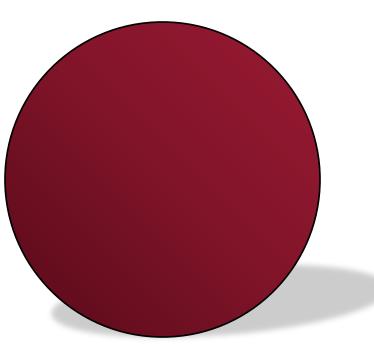
Exploring the Potential of Llama Models in Automated Code Refinement

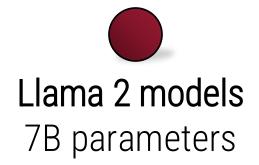
Genevieve Caumartin, Qiaolin Qin, Sharon Chatragadda, Janmitsinh Panjrolia, Heng Li, Diego Elias Costa



Can Smaller Open-Sourced LMs Measure Up with ChatGPT in Code Refinement Tasks?

Why Use Smaller, Open-Sourced Models?


Privacy Concerns
Recurring Inference Costs
High-Performance Hardware Costs



Generated by DALL-E

By Smaller we Mean...

ChatGPT3.5 175B parameters

4

It All Started With

CodeReviewer:

- Pre-trained encoder-decoder
- Trained on code review tasks **ChatGPT3.5**:
- General purpose LLM
- One-shot learning on code
 refinement tasks

Automating Code Review Activities by Large-Scale Pre-training

Zhiyu Li^{*†} Peking University Micr China AkinoLi@pku.edu.cn shua Nan Duan[‡] S Microsoft Research Asia China nanduan@microsoft.com sjar Deep Majumder LinkedIn USA dmajumder@linkedin.com jagr Shengyu Fu

Shengyu Fu Microsoft DevDiv USA shengyfu@microsoft.com

Shuai Lu* Microsoft Research Asia China shuailu@microsoft.com

Shailesh Jannu LinkedIn USA sjannu@linkedin.com

USA nu@linkedin.com Jared Green LinkedIn

LinkedIn USA jagreen@linkedin.com

> Neel Sundaresan Microsoft DevDiv USA neels@microsoft.com

Exploring the Potential of ChatGPT in Automated Code Refinement: An Empirical Study

Qi Guo⁺ Tianjin University Tianjin, China

Check for updates

> Shangqing Liu[†] Nanyang Technological University Singapore

Junming Cao* Fudan University Shanghai, China

Xiaohong Li[†] Tianjin University Tianjin, China

Xin Peng Fudan University Shanghai, China Xiaofei Xie Singapore Management University Singapore

Daya Guo[†]

Sun Yat-sen University

China

guody5@mail2.sysu.edu.cn

Grant Jenks

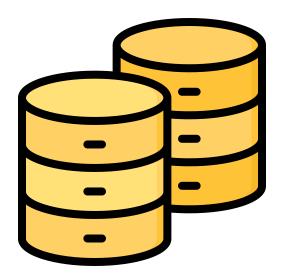
LinkedIn

USA

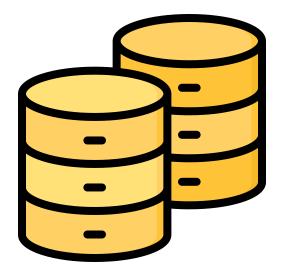
gjenks@linkedin.com

Alexey Svyatkovskiy

Microsoft DevDiv


USA

alsvyatk@microsoft.com


Bihuan Chen Fudan University Shanghai, China

CodeReview (CR) 176k code refinement tasks

CodeReview-New (CRN) 15k code refinement tasks

85% train, 7,5% validation, 7,5% test splits

Sample Code Refinement Task

pokemon_data = self._get_inventory_pokemon(inventory)
for pokemon in pokemon_data:
 if not(pokemon.get('favorite', 0) is 1 and

self.config.get('dont_nickname_favorite','')):

• Code submitted for review

Since `don't_nickname_favorite` is a Boolean, the `get` call should default to a Boolean as well (`False`)

Reviewer's comment

```
pokemon_data = self._get_inventory_pokemon(inventory)
for pokemon in pokemon_data:
    if not(pokemon.get('favorite', 0) is 1 and
        self.config.get('dont_nickname_favorite', False)):
```

• Fix according to comment

Models Under Study

BASELINES

CodeReviewer ChatGPT3.5 Turbo

TESTED MODELS

Llama 2-Instruct 7B CodeLlama-Instruct 7B

Evaluation Metrics

Exact Match (EM) / Exact Match-Trim (EM-T) Evaluates if the code matches the ground truth perfectly

BLEU / BLEU-Trim (BLEU-T)

Calculates 4-gram overlaps

Research Questions

RQ1: Best temperature and prompt settings

RQ2: How do Llama models compare with ChatGPT

RQ3: Factor influencing performance

RQ1: What are the best settings?

Temperatures

°0, 0.5 and 1.0 temperature settings

Temperature 0 is the best setting for all models

Prompts

5 different types of prompts
Each model has its own preference

RQ1: Prompt Building Blocks

Code snippet:``` <code> ```

Code review: <review comment>

Please generate the revised code according to the review [...]

As a developer, imagine you've submitted a pull request, and your team leader requests you to make a change in your code [...]

Please generate the revised code according to the review. Ensure that the revised code follows the original code format and comment, unless explicitly required by the review.

Base Prompt

Scenario Description

Concise Requirements

RQ1: Best Performing Prompts

ChatGPT	Llama 2	CodeLlama
Scenario Description		Scenario Description
Base Prompt	Base Prompt	Base Prompt
	Concise Requirements	Concise Requirements

RQ2: How do Llama Models Compare?

CodeReviewer is #1 on the CR dataset

• CodeLlama beats ChatGPT on BLEU-T

• Llama 2 lags behind

Dataset	Model	EM-T	BLEU-T
CodeReview	CodeReviewer	32.55	83.50
	ChatGPT3.5	19.47	75.12
	CodeLlama	11.89	77.75
	Llama 2	4.98	63.72

RQ2: How do Llama Models Compare?

- CodeReviewer's performance drops
- CodeLlama is head-to-head with ChatGPT on BLEU-T
- Llama 2 beats CodeReviewer on BLEU-T

Dataset	Model	EM-T	BLEU-T
CodeReview-New	CodeReviewer	15.50	62.88
	ChatGPT3.5	22.78	76.44*
	CodeLlama	13.73	77.13*
	Llama 2	8.56	66.88

* Difference not statistically significant

Not an Exact Match, but Alternate Solution?

- Lower # of exact matches for smaller models
- EM-T is strict; penalizes extra spaces, etc.
- In instances where ChatGPT got an ExactMatch, but not CodeLlama:
 48% of CodeLlama's alternate solutions are valid

RQ3: Factors Influencing Performance

• On 400 tasks categorized by Guo et al. by Comment Information

Categorizes reviewer's comment quality

Concrete suggestion:	Comment Information	Code	Llama	Chat	GPT
```suggestion if not self.available or stability <		EM-T	BLEU-T	EM-T	BLEU-T
self.min_stability: return 0.0 return self.value ```	Concrete Suggestion	23.68	84.36	34.74	84.73
Vague question:					
Since we're already passing in the DocumentId for the	Vague Suggestion	1.01	73.60	10.10	73.56
primary document, can we just fetch the linked DocumentIds further down? I'm not sure why we're	Vague Question	1.80	72.81	6.31	68.21
fetching it here only to pass it through.					

## **RQ3: Factors Influencing Performance**

#### Results for CodeLlama

Type of Change		
	EM-T	BLEU-T
Add Documentation	0.0	47.69
Refactor – Rename	26.47	87.17
Refactor - Conventions	20.83	87.77
Modify Code Logic	15.69	80.82
Documentation and Code	0.0	60.32

- Limited ability for adding documentation
- Better at refactoring and modifying existing code

### Latest Llama Model vs CodeLlama

• Llama 3.1-Instruct 8B, improved general-purpose model

 $\circ$  Worse than CodeLlama on EM-T

Dataset	Model	EM-T	BLEU-T
CR	CodeLlama	11.89	77.75
	Llama 3.1	9.76	75.78
CRN	CodeLlama	13.73	77.13*
	Llama 3.1	11.59	78.54*

* Difference not statistically significant

#### Conclusion

- A 25x smaller model shows potential for real-world code review assistance
  - Temp=0 yields best results
  - Data quality important: need concrete suggestions
  - Best at modifying code and refactoring
  - A model fine-tuned on coding tasks is beneficial













