
On the Use of Dependabot Security Pull Requests

Mahmoud Alfadel, Diego Elias Costa, Emad Shihab, Mouafak Mkhallalati
Data-driven Analysis of Software (DAS) Lab

Concordia University
Montreal, Canada

{mahmoud.alfadel, diego.costa, emad.shihab, mouafak.mkhallalati}@concordia.ca

Abstract—Vulnerable dependencies are a major problem in
modern software development. As software projects depend on
multiple external dependencies, developers struggle to constantly
track and check for corresponding security vulnerabilities that
affect their project dependencies. To help mitigate this issue,
Dependabot has been created, a bot that issues pull-requests to
automatically update vulnerable dependencies. However, little is
known about the degree to which developers adopt Dependabot
to help them update vulnerable dependencies.

In this paper, we investigate 2,904 JavaScript open-source
GitHub projects that subscribed to Dependabot. Our results
show that the vast majority (65.42%) of the created security-
related pull-requests are accepted, often merged within a day.
Through manual analysis, we identify 7 main reasons for
Dependabot security pull-requests not being merged, mostly
related to concurrent modifications of the affected dependencies
rather than Dependabot failures. Interestingly, only 3.2% of the
manually examined pull-requests suffered from build breakages.
Finally, we model the time it takes to merge a Dependabot
security pull-request using characteristics from projects, the
fixed vulnerabilities and issued pull requests. Our model reveals
5 significant features to explain merge times, e.g., projects
with relevant experience with Dependabot security pull-requests
are most likely associated with rapid merges. Surprisingly, the
severity of the dependency vulnerability and the potential risk of
breaking changes are not strongly associated with the merge time.
To the best of our knowledge, this study is the first to evaluate
how developers receive Dependabot’s security contributions. Our
findings indicate that Dependabot provides an effective platform
for increasing awareness of dependency vulnerabilities and helps
developers mitigate vulnerability threats in JavaScript projects.

Index Terms—Dependabot, pull request, dependency, security
vulnerability.

I. INTRODUCTION

Modern software systems are increasingly depending on

the reuse of code from external dependencies (i.e., packages).

While the use of dependencies boosts productivity [1] and

software quality [2], it also increases the impact of security

vulnerabilities [3], [4]. A security vulnerability in a highly-

used dependency may directly impact hundreds of applica-

tions, leading to significant financial costs and reputation loss.

An infamous example is the Equifax cybersecurity incident

in 2017, caused by a web-server vulnerability in the Apache

Struts package, which led to illegal access to sensitive in-

formation of almost half of the US population (143 million

citizens) [5].

The open source community has taken active measures

to deal with security vulnerabilities in dependencies. For

example, Dependabot is a very popular GitHub bot that

creates pull-requests (PRs) to help developers automatically

integrate dependency updates and vulnerability fixes into their

projects [6]. Dependabot monitors the GitHub Vulnerability

Advisories dataset to identify the vulnerable dependencies of

the target project. As soon as a dependency vulnerability is

identified, Dependabot sends a notification through a PR that

updates the vulnerable dependency version to non-vulnerable

version that has fixed the security issue, and developers can

simply merge the PR to adopt the suggested update. Currently,

more than 6 million security and non-security related PRs

have been merged in projects from 15 languages supported

by Dependabot [7].

Previous work [8] investigated to which extent dependency

management tools can convince developers to upgrade out-of-

date dependencies, showing that such tools are not yet widely

adopted by developers. However, they focus on the general

problem of outdated dependencies and do not pay particular

attention to security vulnerabilities in dependencies. Given

that dependency updates for vulnerability fixes have a critical

impact, we specifically focus on studying a very popular

dependency tool (e.g., Dependabot) at coping with security

vulnerabilities in dependencies. To our best knowledge, little

is known about the receptivity and level of adoption of De-

pendabot security PRs in real open-source software projects.

Therefore, our main goal is to understand the degree to
which developers adopt Dependabot security PRs that tackle
dependency vulnerabilities in open source projects. To achieve

our goal, we perform an empirical study involving data from

15,243 Dependabot security PRs that belong to 2,904 active

open-source JavaScript projects from GitHub. In the first stage

of our study, we examine how often Dependabot security

PRs are accepted (merged) and how long it takes to merge

them (RQ1), in order to determine to what extent developers

of open-source projects adopt and respond to Dependabot

security PRs. We observe that the majority (65.42%) of the

Dependabot security PRs in our dataset are merged, often

within a day. Still, a significant minority (34.58%) of PRs

are not merged.

As such, to understand the motives that led developers to not

merge Dependabot security PRs, we qualitatively examine the

reasons for Dependabot security PRs not being merged (RQ2).

Our manual analysis identifies 7 main reasons, showing that,

by in large, the majority of non-merged PRs are turned-over

by Dependabot itself. For example, in 50.8% of the manually

studied PRs, Dependabot closes a former security PR in favor

254

2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR)

978-1-7281-8710-5/21/$31.00 ©2021 IEEE
DOI 10.1109/MSR52588.2021.00037

20
21

 IE
EE

/A
C

M
 1

8t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

in
in

g
So

ftw
ar

e
R

ep
os

ito
rie

s (
M

SR
) |

 9
78

-1
-7

28
1-

87
10

-5
/2

0/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

SR
52

58
8.

20
21

.0
00

37

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

of a newer PR that updates to a newer version.

Although the majority of the PRs are merged within a day

(RQ1), we observe a non-negligible proportion of PRs that

took longer to be merged. Hence, to understand what would

lead open source developers to take a longer time to respond

to Dependabot security PRs, we examine the features that

influence the time to merge a Dependabot security PR, given

that the time is crucial and that the longer a package remains

affected, the longer the application that uses it will remain

vulnerable to malicious users (RQ3). We observe, using our

mixed-effects regression model, five highly important features

to explain merge time durations of Dependabot security PRs.

While some common wisdom features (e.g., the project ac-

tivity and the past experience with Dependabot security PRs)

are strongly associated with the timespan of the merged PRs,

the severity of dependency vulnerability and the level of patch

update are not.

To summarize, this paper makes the following contributions:

• To the best of our knowledge, this is the first work to pro-

vide an empirical evidence for understanding developers

adoption of Dependabot security automated PRs in open

source projects, while also discussing the implications of

our findings to practitioners and Dependabot maintainers.

• We qualitatively uncover the possible issues developers

could face when adopting Dependabot PRs. Such evalu-

ation can advance the future work, i.e., researchers can

direct their efforts to identify the cause of the issues and

propose solutions to overcome the limitations.

• We build a logistic regression model that could identify

relative importance of various factors explaining merge

times of Dependabot security PRs.

• We publish our dataset to help foment further empirical

investigations on the related fields [9].

Paper organization. The rest of the paper is organized as

follows. Section II describes our study design. Section III

presents the results of our study. Section IV discusses how

our findings lead to implications to practitioners and future

research directions. Section V presents the related work. Sec-

tion VI presents the threats to validity. Section VII concludes

our paper.

II. CASE STUDY DESIGN

Dependabot aims to help developers automatically update

their dependencies through PRs. There are numerous reasons

to update a dependency, such as making the use of new

features, accessing bug fix patches, etc., which led to the cre-

ation of millions of Dependabot PRs in open-source projects.

Updates that include security issues fixes are among the most

critical reasons developers should update their dependencies,

as applications frequently depend on packages containing vul-

nerabilities [10]. Therefore, we focus in our work on studying

Dependabot security PRs, i.e., to what extent open source

developers adopt Dependabot security PRs to help them keep

their dependencies secure. Hence, we first need to identify and

collect the dataset of Dependabot security PRs, and use this

data to answer the following research questions:

Fig. 1: An example of Dependabot security PR [14].

• RQ1: How often and how fast are Dependabot security

pull requests merged?

• RQ2: What are the reasons for Dependabot security pull

requests being not merged?

• RQ3: What factors are associated with rapid merge times?

Our study examines security PRs created by Dependabot

in JavaScript projects. We chose to focus on JavaScript due

to its wide popularity amongst the development community

[11]. In addition, considering the dynamic nature of JavaScript

and the rapidly growing environment (with more than 1.3M

packages [12]), the problem of maintaining and updating

dependencies is especially challenging, as evidenced by a

recent survey of Node.js developers [13]. Hence, dependency

management in JavaScript is challenging, which makes De-

pendabot effectiveness even more crucial.

To perform our study, we leverage the GitHub API to collect

security PRs that were created by Dependabot for the purpose

of fixing a vulnerable dependency in a JavaScript project.

Obtaining Dependabot security PRs. Dependabot distin-

guishes minor bug fixes and feature enhancements from se-

curity fixes, i.e., whether the dependency update contains a

security fix or not. Security PRs submitted by Dependabot

contain information related to the vulnerability of the affected

dependency, such as the list of vulnerabilities in the security

fix. We show an example of a Dependabor security PR in

Figure 1. Using the GitHub API, we are able to obtain security

PRs by collecting PRs that are: (i) created by Dependabot;

(ii) submitted to JavaScript projects in GitHub, and (iii) for

the purpose of fixing a security vulnerability (i.e., the PR

body refers to a security update). In total, we obtained 36,561

Dependabot security PRs from 6,853 JavaScript projects.

Projects selection. It is known that GitHub contains some

toy projects [15], which are not representative of the software

projects we aim to investigate. Therefore, once the dataset of

Dependabot security PRs is collected, we apply some filtering

255

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Statistics of the 2,904 studied JavaScript projects.

Metric Min. Median (x̄) Mean (μ) Max.

Commits 20 153 465.7 28,486
Age (in days) 146 652 808.3 3,828
Security PRs 1 6 7.3 48

criteria for selecting a set of higher-quality projects. We only

include JavaScript projects that are starred, non-forked, and

contain more than 20 commits, as recommended by prior

studies [8], [15]. After applying these refinement criteria,

we end up with 15,243 PRs, which belong to 2,904 open-

source JavaScript projects that have at least one vulnerable

dependency identified by Dependabot and a security PR was

already created for the purpose of fixing it. The affected

dependencies contain a set of 167 distinct vulnerable packages.

This set contains some popular packages, such as lodash,

eslint-utils, jquery, debug, and merge.

Table I shows the descriptive statistics on the selected

JavaScript projects in our dataset. Overall, the projects in our

dataset have a rich development history and are long-lived

projects (median of 153 commits and 652 days of development

lifespan), and have received a median of 6 security PRs from

Dependabot. Finally, our dataset contains Dependabot security

PRs for the period between June 2017 and April 2020. Note

that Dependabot launching was on May 26, 2017 [16].

III. CASE STUDY RESULTS

In this section, for each RQ, we present our motivation,

describe the approach used, and discuss our findings.

RQ1: How often and how fast are Dependabot security
pull requests merged?
In this RQ, we examine the degree to which open source

developers are responsive to Dependabot security PRs in the

studied projects. Our examination contemplates two main

aspects, namely: how many Dependabot security PRs are

merged (accepted)? (Section III-A), and how long does it take

for these security PRs to be merged? (Section III-B).

A. Acceptance of Dependabot security PRs

Motivation. Given the critical problem of vulnerable

dependencies in the current JavaScript landscape, we want

to understand how receptive to Dependabot security PRs the

open-source projects are. A high adoption rate of Dependabot

security PRs indicates that developers value Dependabot

contributions and agree with its assessment on the importance

of updating their dependencies due to security concerns.

Also, given that updating dependencies comes at the risk of

breaking the project’s own code, the adoption rate shows how

often developers are willing to risk breaking their code to use

a dependency that is free of vulnerabilities.

Approach. To examine the number of merged PRs, we need

first to find the state of each PR in our dataset. PRs have

three different states in GitHub: open, merged and closed

(i.e., not merged). Open PRs indicate that the PR is not yet

TABLE II: Analysis of the merged and not merged Dependabot
security PRs.

Dependabot security PRs # %

Total 13,003 100.00%
Merged 8,506 65.42%
Not Merged 4,497 34.58%

processed by developers and the decision about such PRs is

not yet taken, hence they are not meaningful for this analysis

and have been excluded. To identify whether the PR status

is merged (accepted) or not, we extract the value of the key

merged_at timestamp that is returned from the GitHub API

for each PR. For the closed (not merged) PRs, this timestamp

is null, while for the merged PRs the merged_at timestamp

carries an actual date-time value. After that, we count the

frequency of each PR state.

Results. The total number of Dependabot security PRs in our

dataset after excluding the ones with open state is 13,003.

Of the 13,003 examined Dependabot security PRs in our
dataset, 65.42% are merged. Table II shows the proportion

of each state of the Dependabot security PRs in our dataset.

We observe that the majority of security PRs are merged,

indicating that developers are highly receptive to Dependabot

security PRs in their projects.

B. Lifecycle of Dependabot security PRs

Motivation. The time needed to process (merge or close)

Dependabot security PRs is an important property, as the

longer an application remains depending on vulnerable

versions of packages, the higher the likelihood of having

the vulnerability exploited by attackers. So, to advance our

insights, we study whether developers are responsive at

merging Dependabot security PRs, i.e., if the time that these

security PRs take to be processed is as short as possible.

Therefore, we investigate 1) how long does it take to merge a

security PR since it was first created? and 2) how long does

it take to close a security PR since it was first created?

Approach. To measure the amount of time it takes for

Dependabot security PRs to be processed (merged or closed),

we calculate the time difference (in days) between the

creation date and the merge date for merged PRs, and the

time difference between the creation date and the close date

for closed PRs.

Results. Figure 2 presents a violin-plot containing the dis-

tribution of the amount of time for the merged and not

merged (closed) security PRs, measured in days. From the

Figure, we can observe that the vast majority of the merged
Dependabot security PRs are processed within one day
(median = 1 day).

Figure 2 also shows that the closed security PRs tend to

take longer time to process than the merged ones, i.e., on

median, the closed security PRs took 8 days before being

closed. Comparing the merged and closed security PRs using

256

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

M
er

ge
d

N
ot

 M
er

ge
d

1 10 100 1000
Time (in days)

Fig. 2: Violin-plot showing the distribution of the amount of time for
Dependabot security PRs to be processed (merged and not merged).
Note the logarithmic scale on the x-axis.

the unpaired Mann Whitney test [17] shows that this difference

is statistically significant (p-value = 2.2e-16), with an effect

size (Cliff’s: 0.48) for the differences between merged and

closed PRs, which is a large size of the effect. This ensures that

Dependabot security PRs are either processed and merged fast

or left to linger before they are closed without being merged.

The majority (65.42%) of Dependabot security PRs

are merged and integrated in the projects, often within

a day. Non-merged Dependabot security PRs take, on

median, 8 days to be closed.

RQ2: What are the reasons for Dependabot security pull
requests being not merged?

Motivation. While most PRs are merged (as shown in RQ1),

a non-negligible share (34.58%) of the PRs are closed (not

merged) in the studied projects. It is crucial to understand

why such PRs are not merged, to grasp the motives that led

developers to dismiss them, especially because such security-

related PRs are meant to free open-source projects from

known vulnerabilities. In turn, this can be used to motivate

improvements at Dependabot, with the aim of increasing its

effectiveness. Therefore, we examine why some PRs are not

merged, by performing an in-depth manual analysis.

Approach. To find out why Dependabot security PRs are not

merged in our dataset, we qualitatively examine them based

on the discussion and reviews associated with these PRs. We

collect the discussion and review comments related to each

closed PR. Out of overall closed PRs (4,497), 1.27% have no

discussion or review comments on them, hence, we exclude

them from our analysis since it is very hard to judge such

PRs without any extra information. The first author manually

inspected all remaining closed PRs (4,440) by looking at

the discussion and review comments to determine the reason

for the closing, and (if possible) summarize the reason for

not merging the PR into one sentence. Through this manual

analysis, we identified 7 different groups of reasons for the

PRs not being merged.

To alleviate the potential bias due to our manual classifica-

Fig. 3: Example of Dependabot PR closed for being superseded by
another Dependabot PR (R1).

Fig. 4: Example of Dependabot PR closed because the dependency
was already updated (R2).

tion for these PRs, we obtain a statistically significant sample

of 354 PRs (of the 4,440 PRs) with 95% confidence level and

5% confidence interval. Then, another author independently

examined the 354 PRs. Note that the number of comments

that span over the discussion of the closed PRs is two, on

median, which makes the manual inspection indeed feasible.

To evaluate the agreement between the two authors, we

used Cohen’s Kappa coefficient [18], which is a well-known

statistic that measures the inter-rater agreement level for

categorical scales, and takes into consideration the possibility

of the agreement occurring by chance. In our categorization

of the manually extracted reasons, the level of agreement

between the two authors was of +0.96, which is considered

to be an excellent agreement [19].

Results. Table III summarizes why Dependabot security PRs

are not merged, identified by our manual analysis. Below, we

provide more details about each reason.

• R1. PR is superseded by another newer PR (50.8%): This
is the most common reason for not merging a Dependabot

security PR. In this case, the PR is closed because another

Dependabot security PR updates the affected dependency to

even a newer version that contains fixes to other problems

but not necessarily a new vulnerability. In such cases,

Dependabot itself closes the former PR in favor of the new

and more up-to-date PR. Figure 3 shows an example of

R1 [20]. A few cases (1.06%) of superseded PRs are closed

by project maintainers where they close a set of PRs and

create a single PR that combines all of the changes [21].

• R2. PR is not merged because the update was applied
manually on the dependency file (30.1%): Dependabot

detects that the fixed version has been applied on the depen-

dency file, hence, it closes the corresponding PR. Figure 4

shows an example of R2 where Dependabot closed the PR

that fixes the vulnerable version of the dependency eslint-
utils. We manually searched for the commit that applied the

same fix suggested by Dependabot. In this commit [22], we

observe that the same fix version, suggested by Dependabot,

was manually added through the commit that also has the

257

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

TABLE III: The manually extracted reasons for not merging Dependabot security PRs.

ID Reason Description % % Closed by
Dependabot Others

R1 Superseded A newer PR contains a newer fix version of the affected dependency 50.8% 49.74% 1.06%
R2 Up to date The affected dependency is already updated 30.1% 30.1% -
R3 No longer a dependency The affected dependency is removed 6.6% 6.6% -
R4 No longer updatable The affected dependency has a peer requirement on another dependency 6.4% 6.4% -
R5 Tests Tests run failed 3.2% - 3.2%
R6 Errors Incorrect implementation for handling the dependency fix in the PR 1.4% 1.4% -
R7 Quality Requirement The PR does not comply to the project standards for handling the PRs 1.1% - 1.1%
R8 Unknown The PR could not be classified due to lack of information in the discussion 0.4% - 0.4%

same date as the closed PR date [23].

• R3. PR is not merged because the affected dependency
is removed and no longer exists in the project (6.6%):
Dependabot will close a PR once the corresponding vulner-

able dependency is removed from the project, and hence,

the PR is no longer needed [24].

• R4. PR is not merged due to a peer dependency
requirement (6.4%). Another reason Dependabot closes a

PR is when there is a peer requirement between the affected

dependency and another dependency. Peer dependencies are

a way of specifying dependencies among external packages,

when such packages are compatible with specific depen-

dency versions. Hence, to update/fix an affected dependency,

its peer dependency should also be updated, which may lead

to version conflicts [25]. For example, if the dependency

eslint-config-airbnb@16.1.0 have a peer requirement on

eslint@^4.9.0, so it is required to update this (eslint) until

eslint-config-airbnb is updated. In such cases, Dependabot

opens a PR to update eslint-config-airbnb but later it closes

the PR due to having the peer dependency. We found a

Github issue in Dependabot repository itself about this

problem [26], however, the problem seems not yet properly

resolved by Dependabot according to the issue discussion.

• R5. PR is not merged due to test failures (3.2%). In

such cases, the PR is closed after automated tests have

failed during the CI pipeline run [27]. For example, after

the Travis tests have failed in this PR [28], the project

maintainer closed the PR. When the project maintainer

closes the PR, Dependabot will stop notifying the project

about the current affected dependency version, however, it

opens a new PR when a new fix version of the affected

dependency is available.

• R6. Error in Dependabot (1.4%). We found cases where

the submitted PRs were opened, however, they do not per-

form the correct fix update, and hence, Dependabot closed

such PRs [29]. For example, in Figure 5 we can notice

from the PR title that the affected dependency cryptiles
should be updated from the vulnerable version 3.1.3 to the

fixed version 4.1.3. However, Dependabot was not able to

resolve the dependency to the fixed version, i.e., the PR

commit changes show a different version update than the

one should be. This issue is caused by the challenge of

resolving dependency conflicts of transitive dependencies.

Consider an application that depends on package A, and

package A (transitively) depends on package B. Package A

has a version constraint for depending on package B (^1.0.0)
which contains a vulnerability, and the vulnerability was

only fixed in another major version (e.g., 2.0.1) of package

B. In this case, Dependabot cannot find a version of package

B that complies with the requirement of package A and is

not vulnerable. This type of issues render the R6 reason.

The has now been fixed by Dependabot maintainers [30].

• R7. PR does not comply with the project standards
for handling PRs (1.1%). A small share of open-source

projects specifies what is called Contributor License Agree-

ment (CLA) that should be signed by the contributor before

merging the corresponding PR. In such projects, developers

tend to close the Dependabot security PR after it is submit-

ted. To gain more insights about whether such PRs may be

still useful for the projects (e.g., project maintainers may

manually adopt and apply the dependency fix suggested

by the Dependabot PR), we manually analyze a sample

of such PRs. In particular, we perform our analysis on 15

PRs of a popular and very active project namely box/box-
ui-elements [31]. We could find 8 Dependabot PRs that

are manually applied to the dependency file by a project

maintainer even after closing the Dependabot PRs. For

example, in this PR [32], Dependabot suggests updating

the vulnerable dependency atob from version 2.0.3 to 2.1.2.

Although the project maintainer closed the PR, we find

that the same dependency update was actually applied as

shown in this commit [33], probably to circumvent the

licensing issue. One way to overcome the issue of legal

side of contributions (i.e., CLA requirements) is to white-list

Dependabot in the CLA checker. Some CLA providers (e.g.,

cla-assistant [34]) allow to white-list specific contributions

to a repository.

• R8. Unknown (0.4%). In a small minority of cases (0.4%),

we could not identify the reason of not merging a De-

pendabot PR because its discussion and comments provided

insufficient information relevant to closing the PR [35].

Overall, the vast majority of the examined PRs (93.9%) are

not merged due to four primary reasons related to concurrent

modifications of dependencies: R1 (superseded), R2 (already
up-to-date), R3 (no longer a dependency), R4 (no longer
updatable). Approximately 4% of the PRs are not merged

by project maintainers due to factors related to the project

process and quality specifications (testing, license agreement).

Only 1.4% of the PRs are not merged due to technical errors

258

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Example of a Dependabot PR closed due to Dependabot’s error in the resolved version (R6). As the PR title shows, the affected
dependency Cryptiles should be updated from 3.1.2 to 4.1.3, while the diff change shows a different version update from 3.1.2 to 3.1.3.

in Dependabot. Finally, note that the reasons mentioned above

are not strictly related to security-related Dependabot PRs.

The large majority of the closed Dependabot security

PRs (93.9%) are turned over by Dependabot due to

concurrent modifications of the affected dependencies.

Approximately 4.3% of the non-merged PRs are closed

by developers due to a specific project’s process. Only

1.4% are not merged due to technical issues with

Dependabot.

RQ3: What factors are associated with rapid merge times?

Motivation. While most of the merged Dependabot PRs

are accepted and integrated within one day (RQ1), there is

a sizeable proportion (32.82%) of the merged PRs which

took much longer time to be merged. The time taken to

handle a Dependabot security PR is crucial given that a

quick fix is the only weapon at developers disposal for

minimising the risk of the application being affected by

external vulnerable dependencies. For example, Heartbleed,

a security vulnerability in OpenSSL package, is perhaps

the most infamous example. It was introduced in 2012 and

remained uncovered until April 2014. After its disclosure,

researchers found more than 692 different sources of attacks

attempting to exploit the vulnerability in applications that

used the OpenSSL package [36], [37]. Hence, in this RQ

we aim to study the features that are highly important and

associated with the merge time of a Dependabot security

PR. Doing so is important to gain understanding of why

developers take so long to merge a Dependabot PR that fixes

some publicly discovered vulnerabilities.

Approach. Our goal is to study the most important features

associated with the merge time of a Dependabot security

PR. In particular, we aim to understand the features that

are associated with rapid merge times. To that aim, we

perform a logistics regression analysis that can discriminate

whether a Dependabot security PR is merged rapidly or not.

Therefore, we first classify merge times into rapid vs. not-

rapid. We determine a threshold that discriminates the PRs

merge times in our dataset into rapid vs. not-rapid merge

times, by evaluating the merge time distribution of the PRs.

We find the third quantile (4 days) to be an appropriate

threshold. Note that, influenced by prior studies [38], [39],

we perform several scenarios for choosing our threshold,

i.e., we experimented with different segmentation thresholds

(lower quantile, median, upper quantile). For each scenario,

we measure the logistics model performance using R-squared

(R2) metric [40]. We use the threshold obtained by the top

performing modelling scenario (i.e., the upper quantile). That

said, 6,546 PRs belong to the lower 75% of the data points

(i.e., those are rapid PR merge times), whereas 1,960 PRs

belong to the upper 25% of the data point (i.e., those are not-

rapid PR merge times).

To conduct our logistic regression model we first collect a

set of features by reviewing the related research on the pull-

based software development modelling. Then, we conduct cor-

relation and redundancy analyses to remove highly correlated

features because the existence of correlated and redundant

features can affect regression models [41]. Finally, we fit a

generalized mixed-effects model for logistic regression. These

steps are detailed in the following paragraphs.

(i) Features Selection. To determine our set of features,

we consult the related literature on the field of pull-based

development model, e.g., areas of patch submission and ac-

ceptance [42], [43], code reviewing [44], and also dependency

vulnerability analysis [45], [46]. The initial list of computed

features (described in Table IV) comprises features that span

over three main dimensions as follows:

PR features. These features attempt to capture the influence

of Dependabot security PR characteristics on the merge time.

For example, the size of the patch in the PR could affect

the merge time [42], [43], i.e., the time needed to examine

an external contribution could vary depending on the size of

the contribution. Dependabot security PRs have varying size

depending on the updated dependencies, such as the number

of lines being changed (chanegd_lines) in the dependency

file, which may affect the time it takes for developers to review

and validate the applied changes. In fact, Dependabot triggers

one security PR for each direct vulnerable dependency, by

default. However, if the direct vulnerable dependency requires

transitive dependencies that are also vulnerable, Dependabot

applies additional changes in the same PR, increasing the

impact of the changes, e.g., there is more risk in breaking

259

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: The 15 features selected to model the time to merge Dependabot security PRs.

Feature Name Data Type Description

PR Features
changed_lines Numeric Number of lines changed (added + deleted) in the dependency file by Dependabot PR

auto_merge Category Status of auto-merge method for Dependabot PR. Binary value: True or False
Project Features

sloc Numeric Number of executable source lines of code in the project at Dependabot PR creation time
team_size Numeric Number of the active team members in the project at the PR creation time

num_submitted_PRs Numeric Number of submitted Dependabot security PRs to the project at the PR creation time
num_accepted_PRs∗

Numeric Number of accepted Dependabot security PRs in the project at the PR creation time
perc_accepted_PRs Numeric Percentage of merged Dependabot security PRs in the project at the PR creation time

num_dependencies Numeric Number of total proejct dependencies at the PR creation time
num_recent_commits Numeric Number of commits in the project during the last month prior to the PR creation time

age (days) Numeric Project age at Dependabot PR creation time (i.e., the time interval between project creation time
and Dependabot PR creation time)

total_commits∗
Numeric Number of total project commits at the PR creation time

num_issues Numeric Number of total project issues at the PR creation time
num_PRs Numeric Number of total project PRs at the PR creation time

Vulnerability Patch Features
severity Category Severity of the vulnerability in the affected dependency (Critical, High, Moderate, Low) associated

with the Dependabot PR
patch_level Category Patch level of the dependency update (Major, Minor, Patch) associated with the Dependabot PR

* Features removed after further step-wise feature selection (e.g., correlation).

changes when transitive dependencies are vulnerable. Another

PR feature is the auto-merge. Dependabot provides an

auto-merge feature, which automatically merges Depend-

abot PRs. A project can enable this feature in case it uses a

Continuous Configuration (CI) infrastructure to prevent pos-

sible breaking changes. By default, no PRs are auto-merged.

Note that we assign the auto_merge as a PR feature, as

it can be enabled/disabled during the project lifecycle. Also,

enabling the auto-merge feature does not assure that the PR

will be merged instantly, given that Dependabot will only

merge the PR if the CI tests pass without issues.

Project features. Project features quantify how responsive

to Dependabot security PRs the project is. Essentially, such

features capture how open the project is to accepting such

PRs and its past experience with Dependabot security PRs,

by quantifying past Dependabot merged security PRs (e.g.,

perc_accepted_PRs). Other common wisdom features that

can explain the merge time are related to the project size (e.g.,

sloc, team_size) and maturity of the project (e.g., age).
We obtain the project features from previous studies in the

field of PR acceptance, as the majority of these features have

been successfully used in prior studies [42], [44], [47]–[49] to

explain the merge time of a PR.

Vulnerability patch features. The vulnerability patch fea-

tures quantify the characteristic of the suggested dependency

update in the Dependabot PR. There are three main levels

of dependency update: 1) patch release indicates backward

compatible bug fixes, 2) minor release indicates backwards

compatible new features and 3) major release informs develop-

ers of backwards incompatible changes in the package release.

Therefore, dependency updates that happens at the patch and

minor levels are most likely to have minimal impact on the

project and can be merged faster by developers. The opposite

will happen in updates that bump the dependency to a major

release, which have a higher risk of breaking changes and thus

may take longer to be merged [45], [46]. Additionally, the

severity of the dependency vulnerability is another feature to

explain the project response to a security PR [50]. Dependabot

builds upon GitHub Advisory dataset [51] to provide a sever-

ity level of a dependency vulnerability (i.e., Critical, High,

Moderate, and Low).

(ii) Correlation and Redundancy Analysis. The initial list

of features included 15 features, shown in Table IV. To make

sure that our selected features are not correlated, which could

distort their importance in the model, we conduct a pairwise

correlation analysis. Specifically, we use the Spearman rank

correlation |ρ| metric [52]. A pair of features that have a

correlation of |ρ| ≥ 0.7 should have one of the features

removed. We remove 2 features using that cut-off, namely,

num_accepted_PRs, total_commits.

Furthermore, we perform RDA (redundancy analysis) on

the remaining 13 non-correlated features. A feature can be

redundant if it can be modelled using the other independent

features. That said, we should eliminate independent features

that can be estimated with an R2 >= 0.9 [53]. We observe

no redundant features found in the remaining 13 features.

Table IV shows the final 13 selected features (the features

without ∗ sign) along with their data type and description.

Since the original distributions for most of the features were

on different scales, we decided to re-scale the data (standard-

ization scaler) before using them in the model.

(iii) Statistical Analysis. Since our dataset contains PRs from

different projects (i.e., PRs merging times vary from one

project to the next), we use the generalized mixed-effects lo-

gistic model to control the variation between projects. Mixed-

effects logistic model, unlike the traditional logistic model,

can model the individual differences between the projects by

assigning (and estimating) a different intercept value for each

project [54], [55]. This allows to capture a project-to-project

variability in the dependent feature (PR merge time). We use

260

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Results of the mixed-effects logistic model - sorted by
χ2 in descending order.

Feature Coef. χ2 p-value Sign.+

perc_accepted_PRs 0.63 88.46 < 0.001 ***
auto_merge (TRUE) 1.32 64.57 < 0.001 ***
num_recent_commits 0.71 32.20 < 0.001 ***
num_dependencies -0.23 7.83 0.005 **
age 0.17 4.32 0.037 *
sloc -0.09 2.94 0.086
severity - 1.49 0.683
patch_level - 1.06 0.588
num_PRs -0.11 0.55 0.459
num_submitted_PRs 0.03 0.25 0.617
changed_lines 0.02 0.17 0.681
num_issues -0.05 0.12 0.733
team_size 0.04 0.09 0.765

+ Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05

the glmer function in the lme4 R package to conduct a mixed-

effects logistic model.

To evaluate the fitness of our model, we use the R-squared

metric for generalized mixed-effects models [40], which

describes the proportion of variance considering the project
variable effect. Also, to measure the explanatory power of the

features in the model, and influenced by prior studies [38],

[56], we use χ2 (Chi-Squared). The value of χ2 indicates

whether the model is statistically different from the same

model in the absence of a given independent variable

according to the degrees of freedom in the model. The higher

the χ2 value, the greater the explanatory power of the feature

in distinguishing rapid PR merge times.

Results. Our mixed-effects logistic model achieves a good
performance of discriminating the rapid PR merge times of
Dependabot security PRs using our determined threshold.
The model fits the data well; it explains 67% of the variability

in the data (PR merge times) when considering the project

variable (R2 = 0.67); and 22% when only considering the

independent features without the project variable, showing that

the mixed-effect model is more effective at modelling time to

merge PRs across different projects.

Table V presents the findings of the features importance

derived from the mixed-effects model. All the independent

features are ordered on the basis of their explanatory power

(χ2). With each independent feature, we report its estimated

coefficient, its explanatory power (χ2), its p-value, and its

statistical significance code (using asterisks) to model the rapid

PR merge times. Our results reveal 5 important features to

have a strong association with the time to merge a Dependabot

security PR. The top three features are: (1) the percentage
of past accepted Dependabot security PRs in the project,
(2) the adoption of the auto-merge feature, (3) the level
of project activity prior to the PR creation time. Next, we

explain the important features derived from our model.

As shown in Table V, we observe several features that led

to merge the Dependabot security PRs fast. For example, the

past experience of the project with Dependabot is a major

feature that have a strong association with the PR merge

time. Projects that have had success in accepting and merging

security Dependabot PRs in the past are more likely to merge

Dependabot PRs faster in the future, as indicated by the

positive coefficient of the perc_accepted_PRs in Table V.

This also shows that projects that have experienced issues in

the past are less inclined to merge the PRs without its due

investigation, which may explain the long PR processing time.

Also, enabling the auto-merge feature is strongly asso-

ciated with merging the PRs rapidly. Other highly important

features are related to the project activity. For example, the

level of project activity, denoted by num_recent_commits,
has a strong association with rapid merges, i.e., the model

indicates that the more active the project, the more likely

a Dependabot security PR will be merged within 4 days.

Moreover, our model shows that the project age is another

important feature that explains the rapid PR merges, although

to a lower degree. Projects that have been in development for

years are more likely to merge Dependabot PRs within 4 days,

as opposed to more recent projects.

Furthermore, we observe that the number of project de-

pendencies (num_dependencies) is a feature that correlates

with Dependabot security PRs being merged in more than 4

days. This indicates that projects with a high number of depen-

dencies tend to take longer to merge a Dependabot security

PR. Projects with many dependencies are more susceptible

to dependency vulnerabilities [57], which may lead to an

overwhelmingly high number of Dependabot security PRs,

taking much longer for developers to address all updates.

Finally, it is also surprising to note that some observed

features, such as the vulnerability severity and the dependency

patch-level, do not play a significant role in how rapid a

Dependabot security PR will be merged. This shows that

developers do not necessarily prioritize Dependabot security

PRs depending on the severity of the vulnerability or the

likelihood of a breaking change (patch_level).

The rapid merge time of Dependabot security PRs

is directly associated with the project activity level,

the project past experience with Dependabot security

PRs and the adoption of the auto-merge feature. In

contrast, a project with a high number of dependencies

is more likely to take longer to process the merges.

Surprisingly, neither the severity of the vulnerability

nor the risk of breaking changes (patch level) seems

to significantly influence the PR merge time.

IV. IMPLICATIONS

In this section, we discuss implications of our findings to

practitioners (Section IV-A) and Dependabot (Section IV-B).

A. Implications to practitioners

Open-source projects are highly receptive to Dependabot
security PRs. Our results (RQ1 & RQ2) show that a large

proportion (65.42%) of the Dependabot security PRs are

261

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

accepted, and 50.8% of the closed (not merged) security PRs

are not triggered by developers, but rather by Dependabot

itself in favor of more updated dependency versions. The high

level of acceptance of Dependabot security PRs indicates

that developers are willing to trust external automated

tools for important preventive tasks (security dependency

updates), given that the tool provides sufficient information

for developers to decide. That said, developers should use

Dependabot not just to make their dependencies up-to-date but

also to keep them secure and vulnerability-free. Dependabot

can be seen as a success case to be replicated by tools that

assist developers on a variety of tasks like security updates

through PRs.

Developers are encouraged to enable the auto-merge
feature for improving the merging time of Dependabot
security PRs. Our results (RQ2) show that more than half

(50.8%) of the non-merged PRs in our dataset are superseded

for not being merged on time. Therefore, we recommend

maintainers to review and respond to security updates as

quickly as possible to avoid being affected by publicly known

vulnerabilities. One way to achieve that is by using the auto-

merge feature. Our model (RQ3) shows the importance of

the auto-merge feature. Additionally, our results show that the

security dependency updates of Dependabot rarely break the

tests in the CI pipeline (3.2%), given the fact that Dependabot

issues a PR bumping the current vulnerable version of the

dependency to the closest (minimum) non-vulnerable version

(to reduce the likelihood of build breakage) [58]. In fact,

projects can configure the auto-merge feature to be only

enabled for security PRs [59]. That said, developers are better

off setting a CI pipeline to automatically merge Dependabot

security PRs, particularly in projects that are not in active

development or suffer from lack of resources.

B. Implications to Dependabot maintainers

Dependabot needs to properly handle peer dependencies.
Our results (RQ2) show that 6.4% of the closed security

PRs are accidentally closed by Dependabot when there is a

peer dependency. If a vulnerable dependency A has a peer

dependency to B (i.e., the semantic version of the dependency

A allows only specific versions to be compatible with the

dependency B), creating a PR to update the dependency

A would produce version conflicts, effectively leading

Dependabot to close the PR after opening it. In such cases,

to avoid version conflicts for the peer dependency, the

dependency B in the previous example should be updated

prior, to be compatible with the new version update of the

vulnerable dependency A. At current stage, Dependabot is

not fully able to handle such peer dependency updates [26].

Therefore, and given that security updates are essential,

Dependabot should find a mechanism to be able to resolve

the version conflicts among the peer dependencies in the

target project, by updating them to compatible versions.

Dependabot needs to be more efficient for projects with a
high number of dependencies. Our model (RQ3) pinpoints

the num_dependencies as one of the significant factors

for taking a long time to merge a security Dependabot PR.

In fact, we have seen several cases (e.g., [60], [61]) where

developers have manually consolidated multiple Dependabot

PRs into a single PR, to only then update the dependencies

all at once. Dependabot can be more efficient by providing

ways of grouping PRs to reduce security notification fatigue

in large projects. Also, such feature would be more essential

in case multiple dependencies need to be updated at the same

time or they can break the application.

Dependabot needs to prioritize security updates by more
fine-grained analysis of dependency vulnerabilities. Cur-

rently, Dependabot provides the maintainers with a way

to prioritize receiving notifications for Dependabot security

PRs [62]. This is done by using the vulnerability severity level

of the suggested security updates. Our model (RQ3) shows that

the security PRs are treated independently of the severity level,

indicating a need for a better way of prioritization. A potential

improvement to Dependabot is to give priority to updates

where the vulnerability part of the dependency is actively used

by the project’s code. This is admitedly difficult, particularly

in dynamically typed languages such as JavaScript, but a

conservative approximation can be used to hint developers they

need to act fast. Techniques discussed in the literature might

be used to achieve this fine-grained prioritization, e.g., SAP

organization had recently created a tool that applies static and

dynamic analyses to detect and mitigate the use of vulnerable

dependencies at the code-level [63], [64].

V. RELATED WORK

The works most related to ours are studies that propose or

discuss dependency management tools for security vulnerabili-

ties. Previous studies (e.g., [65], [66]) have shown that projects

are slow in terms of responding to security vulnerabilities

that are publicly announced, which is sometimes due to

factors related to resources and process management. The

software development community has proposed several tools

that help developers be aware of dependency updates and

vulnerabilities. For example, Cadariu [67] developed a Vulner-

ability Alert Service (VAS), which scans Maven dependencies

against vulnerabilities using the Common Vulnerabilities and

Exposures (CVE) database. Apiwave [68] is another tool that

tracks API migrations in order to help developers be aware of

their project dependency updates. The current version of the

Apiwave tool provides data for 650 Java projects, from which

320K APIs were extracted. One limitation of these tools is that

they only send alerts to notify developers about the vulnerable

dependencies without being able to automatically fix them.

Other works focused on identifying dependency vulnerabil-

ities at a more fine-grain level. For example, Ponta et al. [69]

proposed a code-centric tool to detect and mitigate dependency

vulnerabilities for Java and Python industry applications. Also,

a study by Bodin et al. [64], using extracted methods, show

262

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

that the code-centric detection tool is viable, although there

are challenges related to the JavaScript language and the

complexity of the application dependencies. Pashchenko et

al. [70], [71] proposed an approach that addresses the over-

estimation problem of techniques that report vulnerable de-

pendencies in the Java ecosystem. The authors highlighted

that many of the vulnerable dependencies were actually not

deployed, and hence, their impact was neglected. Zerouali et

al. [72] proposed a tool to analyze vulnerabilities that affect

npm dependencies in Docker containers.

More specifically, some tools (e.g., [73], [74]) aim to help

project maintainers automatically track and update their depen-

dencies. For example, David-DM [73] is a tool that uses what

is called "coloured (badges)", trying to convince developers

to update their outdated dependencies. The tool checks for

outdated dependencies and colours a dependency badge with

red, indicating that an outdated dependency version is used.

Greenkeeper [74], an automated PRs bot, is another tool that

helps developers keep their project dependencies up-to-date by

creating PRs that make the required changes for the depen-

dency version update. The work that is most close to ours is the

study by Mirhosseini and Parnin [8]. Their work investigated

the use of pull requests and badges in the tools David-DM

(badges) and Greenkeeper (PRs) to understand whether such

tools help developers upgrade outdated dependencies. They

analyzed more than 6K GitHub projects that used these tools,

and found that projects using the PR tool (i.e., Greenkeeper)

tend to upgrade more often than projects that use the Badge

tool (David-DM). Nevertheless, the Greenkeeper tool could

convince developers of the examined projects to accept only a

third of the submitted PRs with a relativity high rate of build

breakages (i.e., 25%), indicating the need for better automated

dependency tools to convince developers respond to these PRs.

The analysis in the study focused on only seven npm packages

in the studied projects.

Gousios et al. [42] studied the use of pull-request in the

general software development. For example, they found that

80% of typical pull requests are merged within 3 days. Our

paper differs from Gousios et al.’s study since we study

Dependabot-generated security PRs specially for dependency

updates, whereas that study focuses on PRs for software

development in general. While we found some overlapping

reasons for not merging a PR with the studied from Gousious

et al. [42], most of our findings are unique and applicable only

to the context of automatic dependency updates.

Our study complements previous works since we specif-

ically focus on studying security updates, i.e., we study a

large dataset of Dependabot security pull requests. Moreover,

we examine the reasons for Dependabot security PRs being

not-merged. Our case study shows that developers make a

good use of dependency tools such as Dependabot, responding

quickly to the majority of Dependabot security pull requests

(less than a day), suffering from a low rate of build breakages.

Additionally, our paper adds to the literature through, for

example, understanding what factors influence the merge time

of a Dependabot security PR.

VI. THREATS TO VALIDITY

Internal validity: Threats to internal validity concern factors

that might affect the casual relationship and experimental bias.

In RQ2, we manually analyze the non-merged PRs to identify

the reasons of their apparent rejection by developers. This

analysis is subjected to the author bias, as every investigator

has a subjective method when classifying a PR. We mitigate

this threat by asking a second author to independently classify

the reasons for not merging and calculate the inter-rater agree-

ment in our methodology (Cohen’s Kappa coefficient [18]).

The level agreement (+0.96) indicates that our results are more

likely to hold.

Another concern is related to the conclusion drawn from

the built model by studying the association between the inde-

pendent and dependent variables. In our work, we study the

features that influence the time it takes to merge a Dependabot

security PR. To achieve that, we built our model using 13

features that span over three dimensions. However, our set of

features are not exhaustive, and other features can be added

and show influence for the PR merge times. Still, our model

is able to explain 67% of the data variation, which for our

purposes is a good initial model for understanding the factors

that correlate with the merge time.

External validity: Threats to external validity concern the

generalizability of our findings. Our study analyses only

JavaScript projects that subscribe to Dependabot. Therefore,

our results cannot be generalized to projects of different

languages and other ecosystems. Still, given that JavaScript

was the first major language supported by Dependabot, it

has had a more widespread adoption, which enable us to

assess its use on a larger dataset of projects. Furthermore,

our methodology can be applied to investigate Dependabot in

projects from other programming languages.

VII. CONCLUSION

This paper conducts an empirical study to investigate

the use of Dependabot security pull requests, by examining

15,243 pull requests submitted to 2,904 JavaScript open source

GitHub projects. Our results show that a large proportion

(65.42%) of Dependabot security PRs are merged, often in

one day. Furthermore, our manual analysis leads us to identify

that most of the non-merged security PRs (93.9%) are actually

closed by Dependabot itself, mostly related to concurrent

modifications on the affected dependencies, rather than De-

pendabot failures. Finally, we build a mixed-effects regression

model to understand why some of the pull requests take longer

to be merged. Our results reveal 5 important features, e.g., the

project past experience with Dependabot security PRs is the

most influential feature. We note, however, that the severity

of the vulnerability and the risk of breaking changes are

not significantly associated with rapid merges. Our findings

indicate that Dependabot provides an effective platform to help

developers secure their dependencies. Leveraging our findings,

we provide a series of implications that is of interest for

practitioners and Dependabot maintainers alike.

263

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences
productivity in object-oriented systems,” Communications of the ACM,
vol. 39, no. 10, pp. 104–116, 1996.

[2] W. C. Lim, “Effects of reuse on quality, productivity, and economics,”
IEEE software, vol. 11, no. 5, pp. 23–30, 1994.

[3] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world
with high risks: A study of security threats in the npm ecosystem,”
USENIX Security Symposium, 2019.

[4] M. Alfadel, D. E. Costa, and E. Shihab, “Empirical analysis of security
vulnerabilities in python packages,” in Proceedings of the 2021 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2021, pp. 446–457.

[5] Equifax, “Equifax releases details on cybersecurity incident,
announces personnel changes | equifax„” accessed on 01/12/2021.
[Online]. Available: https://investor.equifax.com/news-and-events/news/
2017/09-15-2017-224018832

[6] “dependabot/dependabot-core,” https://github.com/dependabot/
dependabot-core, (Accessed on 01/12/2021).

[7] “Dependabot,” https://dependabot.com/, (Accessed on 01/12/2021).
[8] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage

software developers to upgrade out-of-date dependencies?” in 2017 32nd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2017, pp. 84–94.

[9] Anonymous, “On the use of dependabot security pull requests | zenodo,”
https://zenodo.org/record/4437290, (Accessed on 01/13/2021).

[10] "Snyk.io", “The state of open source security 2020 | snyk,” in
Snyk Reports, 2020, (Accessed on 01/12/2021). [Online]. Available:
https://snyk.io/open-source-security/

[11] SOF, “Stack overflow developer survey 2019,” https://insights.
stackoverflow.com/survey/2020#overview, 2020, (Accessed on
01/12/2021).

[12] “Libraries.io - the open source discovery service,” https://libraries.io/,
(Accessed on 01/12/2021).

[13] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? an empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. ACM, 2017, pp. 385–395.

[14] “[security] bump lodash from 4.17.11 to 4.17.14 by dependabot-preview
· pull request #2201 · atom/github,” https://github.com/atom/github/pull/
2201, (Accessed on 01/12/2021).

[15] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[16] “Dependabot,” https://dependabot.com/blog/introducing-dependabot/,
(Accessed on 01/12/2021).

[17] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[18] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and psychological measurement, vol. 20, no. 1, pp. 37–46, 1960.

[19] J. L. Fleiss and J. Cohen, “The equivalence of weighted kappa and the
intraclass correlation coefficient as measures of reliability,” Educational
and psychological measurement, vol. 33, no. 3, pp. 613–619, 1973.

[20] “[security] bump tar from 4.4.1 to 4.4.13 by dependabot-preview ·
pull request #91 · slothpixel/ui,” https://github.com/slothpixel/ui/pull/91,
(Accessed on 01/12/2021).

[21] “chore(deps): [security] bump axios from 0.18.0 to 0.19.0 by
dependabot-preview · pull request #245 · fromdoppler/doppler-webapp,”
https://github.com/FromDoppler/doppler-webapp/pull/245, (Accessed
on12/30/2020).

[22] “Upgrade dependencies to latest version · steelbrain/babel-
cli@c8c9859,” https://github.com/steelbrain/babel-cli/
commit/c8c985925c3513f2dd26241a75d71953dd5e1d39#
diff-b9cfc7f2cdf78a7f4b91a753d10865a2, (Accessed on 01/12/2021).

[23] “Bump eslint-utils from 1.3.1 to 1.4.3 by dependabot-preview · pull re-
quest #85 · steelbrain/babel-cli,” https://github.com/steelbrain/babel-cli/
pull/85, (Accessed on 12/30/2020).

[24] “[security] bump stringstream from 0.0.5 to 0.0.6 by dependabot-
preview · pull request #33 · 4catalyzer/graphql-validation-complexity,”
https://github.com/4Catalyzer/graphql-validation-complexity/pull/33,
(Accessed on 12/30/2020).

[25] “[security] bump mixin-deep from 1.3.1 to 1.3.2 by dependabot-
preview · pull request #3 · codeparticle/react-visible,” https://github.com/
codeparticle/react-visible/pull/3, (Accessed on 12/30/2020).

[26] “No longer updatable · issue #1138 · dependabot/dependabot-core,”
https://github.com/dependabot/dependabot-core/issues/1138, (Accessed
on 01/12/2021).

[27] “[security] bump eslint-utils from 1.4.0 to 1.4.2 by dependabot-preview
· pull request #105 · joshghent/blog,” https://github.com/joshghent/blog/
pull/105, (Accessed on 12/30/2020).

[28] “Job #231.2 - joshghent/blog - travis ci,” https://travis-ci.org/github/
joshghent/blog/jobs/577015435, (Accessed on 01/12/2021).

[29] “[security] bump cryptiles from 3.1.2 to 4.1.3 by dependabot-preview
· pull request #39 · hinaloe/public-toot-viewer,” https://github.com/
hinaloe/public-toot-viewer/pull/39, (Accessed on 12/30/2020).

[30] “Js: Handle version resolution for sub-dependencies
when not updating dependabot/dependabot-core@b917ac1,”
https://github.com/dependabot/dependabot-core/commit/
b917ac195748f2d2812071c3cffaf7b77b6b5489, (Accessed on
01/12/2021).

[31] “box/box-ui-elements: React components for box’s design system and
pluggable components,” https://github.com/box/box-ui-elements, (Ac-
cessed on 01/12/2021).

[32] “build(deps): [security] bump atob from 2.0.3 to 2.1.2 by dependabot-
preview · pull request #1521 · box/box-ui-elements,” https://github.com/
box/box-ui-elements/pull/1521, (Accessed on 01/12/2021).

[33] “chore: upgrades most dev dependencies (#1753) · box/box-
ui-elements@7c8bde4,” https://github.com/box/box-ui-elements/
commit/7c8bde43917e9bef50c38ef5e7af3fe168412b1d#
diff-8ee2343978836a779dc9f8d6b794c3b2, (Accessed on 01/12/2021).

[34] cla assitant, “cla-assistant/cla-assistant: Contributor license agreement
assistant (cla assistant),” https://github.com/cla-assistant/cla-assistant,
(Accessed on 01/12/2021).

[35] “Bump gatsby from 2.13.50 to 2.13.52 by dependabot-preview ·
pull request #860 · prideinlondon/pride-london-web,” https://github.com/
PrideInLondon/pride-london-web/pull/860, (Accessed on 01/12/2021.

[36] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey et al., “The matter
of heartbleed,” in Proceedings of the 2014 conference on internet
measurement conference, 2014, pp. 475–488.

[37] “Heartbleed flaw was unknown before disclosure | com-
puterworld,” https://www.computerworld.com/article/2605220/
heartbleed-flaw-was-unknown-before-disclosure.html, (Accessed
on 01/12/2021).

[38] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical study of
the long duration of continuous integration builds,” Empirical Software
Engineering, vol. 24, no. 4, pp. 2102–2139, 2019.

[39] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. Damian, P. De-
vanbu, and V. Filkov, “The sky is not the limit: multitasking across
github projects,” in Proceedings of the 38th International Conference
on Software Engineering, 2016, pp. 994–1005.

[40] S. Nakagawa and H. Schielzeth, “A general and simple method for
obtaining r2 from generalized linear mixed-effects models,” Methods
in ecology and evolution, vol. 4, no. 2, pp. 133–142, 2013.

[41] P. Domingos, “A few useful things to know about machine learning,”
Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012.

[42] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of
the pull-based software development model,” in Proceedings of the 36th
International Conference on Software Engineering, 2014, pp. 345–355.

[43] P. Weißgerber, D. Neu, and S. Diehl, “Small patches get in!” in
Proceedings of the 2008 international working conference on Mining
software repositories, 2008, pp. 67–76.

[44] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 202–212.

[45] C. Bogart, C. Kästner, and J. Herbsleb, “When it breaks, it breaks:
How ecosystem developers reason about the stability of dependencies,”
in 30th IEEE/ACM International Conference on Automated Software
Engineering Workshop (ASEW), 2015. IEEE, 2015, pp. 86–89.

[46] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an api:
cost negotiation and community values in three software ecosystems,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 2016, pp. 109–120.

264

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

[47] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu, “Wait for
it: Determinants of pull request evaluation latency on github,” in 2015
IEEE/ACM 12th working conference on mining software repositories.
IEEE, 2015, pp. 367–371.

[48] D. M. Soares, M. L. de Lima Júnior, L. Murta, and A. Plastino, “Accep-
tance factors of pull requests in open-source projects,” in Proceedings
of the 30th Annual ACM Symposium on Applied Computing, 2015, pp.
1541–1546.

[49] M. M. Rahman and C. K. Roy, “An insight into the pull requests of
github,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, 2014, pp. 364–367.

[50] A. Decan, T. Mens, and E. Constantinou, “On the impact of security vul-
nerabilities in the npm package dependency network,” in International
Conference on Mining Software Repositories, 2018.

[51] GitHub, “Github advisory database,” https://github.com/advisories?
page=1, 2017, (Accessed on 01/12/2021).

[52] W. Sarle, “Sas/stat user’s guide: The varclus procedure. sas institute,”
Inc., Cary, NC, USA, 1990.

[53] F. E. Harrell Jr, Regression modeling strategies: with applications to
linear models, logistic and ordinal regression, and survival analysis.
Springer, 2015.

[54] B. Winter, “Linear models and linear mixed effects models in r with
linguistic applications,” University of California, Merced, Cognitive and
Information Sciences, 2013.

[55] A. J. Lewis, Mixed effects models and extensions in ecology with R.
Springer, 2009.

[56] S. Ruangwan, P. Thongtanunam, A. Ihara, and K. Matsumoto, “The
impact of human factors on the participation decision of reviewers in
modern code review,” Empirical Software Engineering, vol. 24, no. 2,
pp. 973–1016, 2019.

[57] A. Gkortzis, D. Feitosa, and D. Spinellis, “Software reuse cuts both
ways: An empirical analysis of its relationship with security vulnerabil-
ities,” Journal of Systems and Software, pp. 1–14, 2020.

[58] “About dependabot security updates - github docs,” https://docs.github.
com/en/free-pro-team@latest/github/managing-security-vulnerabilities/
about-dependabot-security-updates, (Accessed on 01/12/2021).

[59] “Dependabotschedule,” https://dependabot.com/docs/config-file/
#update_schedule-required, (Accessed on 01/12/2021).

[60] “Update dependencies by andresmoschini · pull request #250
· fromdoppler/doppler-webapp,” https://github.com/FromDoppler/
doppler-webapp/pull/250, (Accessed on 01/12/2021).

[61] “Dependency updates by edm00se · pull request #49 · edm00se/emoji-
transmogrifier,” https://github.com/edm00se/emoji-transmogrifier/pull/
49/commits, (Accessed on 01/12/2021).

[62] “Configuring notifications - github docs,” https:
//docs.github.com/en/free-pro-team@latest/github/
managing-subscriptions-and-notifications-on-github/
configuring-notifications#filtering-email-notifications, (Accessed
on 01/12/2021).

[63] S. E. Ponta, H. Plate, and A. Sabetta, “Detection, assessment and
mitigation of vulnerabilities in open source dependencies,” Empirical
Software Engineering, vol. 25, no. 5, pp. 3175–3215, 2020.

[64] B. Chinthanet, S. E. Ponta, H. Plate, A. Sabetta, R. G. Kula, T. Ishio,
and K. Matsumoto, “Code-based vulnerability detection in node. js
applications: How far are we?” in 2020 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2020,
pp. 1199–1203.

[65] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[66] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and J. González-
Barahona, “An empirical analysis of technical lag in npm package de-
pendencies,” in International Conference on Software Reuse. Springer,
2018, pp. 95–110.

[67] M. Cadariu, E. Bouwers, J. Visser, and A. van Deursen, “Tracking
known security vulnerabilities in proprietary software systems,” in 2015
IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 2015, pp. 516–519.

[68] A. Hora and M. T. Valente, “apiwave: Keeping track of api popularity
and migration,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2015, pp. 321–323.

[69] S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-centric
and usage-based analysis of known vulnerabilities in open-source soft-
ware,” in 2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2018, pp. 449–460.

[70] I. Pashchenko, H. Plate, S. E. Ponta, A. Sabetta, and F. Massacci,
“Vulnerable open source dependencies: Counting those that matter,”
in Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, 2018, pp. 1–10.

[71] ——, “Vuln4real: A methodology for counting actually vulnerable
dependencies,” IEEE Transactions on Software Engineering, 2020.

[72] A. Zerouali, V. Cosentino, G. Robles, J. M. Gonzalez-Barahona, and
T. Mens, “Conpan: a tool to analyze packages in software containers,”
in 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 592–596.

[73] “David, a dependency management tool for node.js projects,” http:
//freestyle-developments.co.uk/blog/?p=457, (Accessed on 01/12/2021).

[74] “Greenkeeper | automate your npm dependency management,” https:
//greenkeeper.io/, (Accessed on 01/12/2021).

265

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:39:53 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T13:09:46-0400
	Preflight Ticket Signature

