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The reliance on vulnerable dependencies is a major threat to software systems. Dependency vulnerabilities are

common and remain undisclosed for years. However, once the vulnerability is discovered and publicly known

to the community, the risk of exploitation reaches its peak, and developers have to work fast to remediate the

problem. While there has been a lot of research to characterize vulnerabilities in software ecosystems, none

have explored the problem taking the discoverability into account.

Therefore, we perform a large-scale empirical study examining 6,546 Node.js applications. We define

three discoverability levels based on vulnerabilities lifecycle (undisclosed, reported, and public). We find

that although the majority of the affected applications (99.42%) depend on undisclosed vulnerable packages,

206 (4.63%) applications were exposed to dependencies with public vulnerabilities. The major culprit for the

applications being affected by public vulnerabilities is the lack of dependency updates; in 90.8% of the cases,

a fix is available but not patched by application maintainers. Moreover, we find that applications remain af-

fected by public vulnerabilities for a long time (103 days). Finally, we devise DepReveal, a tool that supports

our discoverability analysis approach, to help developers better understand vulnerabilities in their application

dependencies and plan their project maintenance.
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1 INTRODUCTION

Modern software systems are developed with increasingly more reliance on open source software
packages (dependencies). This dependence on open source packages is highly beneficial to soft-
ware development, as it speeds up development tasks and improves software quality [21, 46], but
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has implications on the security of those systems [19, 31]. Dependencies with security vulnera-
bilities have the potential to expose hundreds of applications to security breaches, causing huge
financial and reputation damages. One such example is the Equifax incident [35], where a vulner-
ability on a single dependency of Equifax (the Apache Struts package) led to unauthorized access
to hundreds of millions of consumers’ personal information and credit card numbers.

The recent popularity of software packages has only magnified the problem. For example, npm
(the main package manager used by Node.js applications) hosts more than 1.73M npm packages
available for the JavaScript community. Prior studies (e.g. Reference [67]) showed that a significant
proportion (up to 40%) of all npm packages use code with at least one publicly known vulnerability,
which increases the risk of a vulnerable package in a software application.

In fact, an essential factor to evaluate the impact of vulnerable packages in an application is the
discoverability of vulnerabilities, i.e, how publicly known is the package vulnerability [52]. As an
example, the vulnerability that caused the Heartbleed incident was not discovered in the OpenSSL
package for years [6], but once published, more than 4,000 exploit attempts were registered by
researchers [33]. While undisclosed (unknown) vulnerabilities can be exploited by attackers who
are aware of the breach, once vulnerabilities become public, the chances of exploitation reach their
peak and developers need to act fast to mitigate the security risks.

To our best knowledge, none of the previous studies has explored the problem of vulnerable
dependencies taking discoverability into account. Hence, to shed light on this aspect and better
understand the impact of a dependency vulnerability on an application, we examine the vulnera-
bilities based on their discoverability. To achieve this goal, we classify software vulnerabilities into
three discoverability levels: undisclosed, indicating that a vulnerability that affects a dependency
was not disclosed yet at a specific point in the application lifetime; reported, indicating that a vul-
nerability was officially reported to project maintainers for investigation but not yet published;
public, indicating that a vulnerability has been published and/or a proof-of-concept of how to ex-
ploit it is given. Note that this is a post-mortem classification, using information only available
after the fact, for the purpose of evaluating dependency vulnerabilities impacting the applications.

We use our discoverability levels and perform an empirical study involving 6,546 active and
mature open source Node.js applications. First, to better understand the threat of dependencies on
the software applications, we examine (RQ1) how the discoverability levels of vulnerable depen-
dencies are distributed in the studied applications. Our findings show that although the majority
(99.42%) of the affected applications (in one of their latest versions) are classified as having undis-

closed dependency vulnerabilities, 4.63% of these applications depended on a public dependency
vulnerability, where the discoverability is at its highest. This means that those applications depend
on vulnerable versions of dependencies even after the vulnerability reports have been published.

Therefore, to better understand the reason for the existence of the threat due to the public depen-
dency vulnerability (i.e., is it the application that did not update a dependency or is it the package
that did not provide a fixing update), we examine the responsibility for the dependence on public
vulnerabilities in (RQ2). We find that the vast majority (90.8%) of the public dependency vulner-
abilities were due to lack of dependency updates from applications, i.e., vulnerable dependencies
had an available vulnerability fix (patch) but developers did not update their application to a newer
(safer) version of the vulnerable dependency.

Finally, it is critical that applications patch public dependency vulnerabilities as soon as possible
to avoid potential exploits. Hence, to understand how fast vulnerable dependencies are patched
in the applications, we examine (RQ3) how long it takes for public dependency vulnerabilities
to be removed from the applications. We find that the applications take a substantially long time
(103 days) before public dependency vulnerabilities are fixed in the applications.
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In summary, this article makes the following main contributions:

• To the best of our knowledge, we conduct the first empirical study on 6,546 open-source
Node.js applications to determine the prevalence of affected applications that rely on vul-
nerable dependencies taking into consideration the discoverability levels. We also examine
why these applications end up depending on vulnerable versions of the package to better
understand how we can mitigate such issues.
• We develop DepReveal, a prototype tool that generates historical analytical reports of npm

packages used in a GitHub Node.js project. The tool (DepReveal) is only a proof of concept
that has the potential to help developers when dealing with post-mortem analysis of security
vulnerabilities.
• We provide a replication package comprising the scripts and the applications dataset that

we used in this study as a means to bootstrap other studies in the area.

Article organization. The rest of the article is organized as follows: Section 2 describes how npm
manages dependencies in Node.js applications. Section 3 introduces our vulnerability classification
used in this study. Section 4 describes our study design. Section 5 explains how we identify and
classify vulnerable dependencies in Node.js applications. Section 6 presents our results. Section 7
discusses our results further. Section 8 presents our tool. Section 9 discusses the implications of
our findings. Section 10 discusses the related work. Section 11 presents the threats to validity.
Section 12 concludes our article.

2 NPM DEPENDENCY MANAGEMENT

Since determining vulnerable dependencies in Node.js applications heavily relies on the manage-
ment of the dependencies and how they are resolved (i.e., the dependency constraints), in this
section, we highlight how npm dependency management works.

Node Package Manager (npm) is the de facto package manager used by Node.js applications to
handle their dependencies [51]. npm has a registry where packages are published and maintained.
To date, npm registry hosts more than 2M packages [10] and has had the highest growth rate in
terms of packages amongst all known programming languages [10].

To determine the discoverability of vulnerable dependencies in Node.js applications, we need
to understand two important mechanisms of the npm ecosystem: (1) how Node.js applications
specify their npm dependencies and (2) how npm resolves a dependency version, i.e., find the de-
pendency version to install in a Node.js application. Node.js applications specify their dependen-
cies in a JSON-format file, called package.json, which lists the dependencies and their versioning
constraints. The versioning constraint is a convention to specify the dependency version(s) of the
package that an application is willing to depend upon. The version constraints can be static, requir-
ing a specific version of the dependency (e.g., “P:1.0.0”), or dynamic, specifying a range of versions
of the dependency (e.g., “P:>1.0.0”). Typically, developers use dynamic versioning constraints if
they want to install the latest version of a dependency, allowing them to get the latest updates/se-
curity fixes of the package. When a dynamic version is used, the resolved version (i.e., the actual
version) corresponds to the latest installable version that satisfies the constraint [28].

Node.js applications can specify two sets of dependencies in their package.json file: development
and production dependencies. Development dependencies are installed only on development envi-
ronments, and consequently, issues that may arise from them (e.g., vulnerabilities and bugs) have
no impact on production environments. However, production dependencies (also called runtime
dependencies) are installed on both production and development environments. In our work, we
only consider direct production dependencies, since they are the ones that impact the production
environment [32].
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3 ABOUT DISCOVERABILITY

In this section, we explain the stages of a vulnerability lifecycle and how that influences the levels
of discoverability we investigate in our study.

3.1 Vulnerability Lifecycle

Typically, a vulnerability goes through a number of different stages [1, 11]:

• Introduction. This is when the software vulnerability is first introduced into the package
code. At this stage, no one really knows about its existence, assuming that the introduction
is not malicious.
• Report. When a vulnerability is discovered, it must be reported to the npm security team.

The npm team investigates to ensure that the reported vulnerability is legitimate. At this
stage, only the security team and the reporter of the vulnerability know about its existence.
• Notification. Once the reported vulnerability is confirmed, the security team triages the

vulnerability and notifies the vulnerable package maintainers. At this stage, only the reporter,
npm team, and package maintainers know about the vulnerability.
• Publication without a known fix. Once the package maintainers are notified, they have

45 days before npm publishes the vulnerability publicly. Alongside with publishing the vul-
nerability, the npm team may also publish a proof-of-concept showing how the vulnerability
can be exploited [9]. At this stage, the vulnerability is known publicly and its potential risk
is higher.
• Publication with a fix. Another (and more common) way that a vulnerability can be pub-

lished is when a fix is provided by the package maintainers. If a fix is provided (before
45 days), then npm publishes the vulnerability along with the version of the package that
fixes the vulnerability.

3.2 Discoverability Levels

The different stages of a vulnerability significantly impact its chance to be discovered by an at-
tacker. Our study is based on the idea that vulnerabilities should be examined while taking their
discoverability into consideration to better assess their potential for exploitation. We use the vari-
ous stages to ground our argument and define three specific levels:

(1) Undisclosed: before report. Since very little is known about a vulnerability before it is
reported, i.e., dependency vulnerabilities in the application are not disclosed yet, we believe
that the chances of being exploited are low. We classify all dependency vulnerabilities in the
application at this stage as undisclosed dependency vulnerabilities.

(2) Reported: after report & before publication. Once a vulnerability has been discovered
and reported, the general public is not yet aware of the vulnerability, as the process is con-
ducted internally by the npm team. Still, there is a chance that others may know about the
vulnerability and has the capability to exploit, so we consider the chances of exploit to be
at a medium level. We classify dependency vulnerabilities in the application at this stage as
reported dependency vulnerabilities.

(3) Public: after publication. After publication the chance of exploitability is at its highest. A
proof-of-concept is often published [9] alongside the vulnerability report, explaining how
the vulnerability could be exploited. The threat of this vulnerability can only be mitigated
once package maintainers release another version fixing the vulnerability and the applica-
tion developers update their dependency accordingly. Failing to perform both these tasks
in a timely fashion may put the application at higher security risk. We classify dependency
vulnerabilities in the application at this stage as public dependency vulnerabilities.
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Note that our discoverability levels are not based on a heuristic, but rather on the existing typi-
cal vulnerability disclosure process. Such a disclosure process has been discussed and mentioned
in previous studies [1, 31]. For example, Decan et al. [31] analyzed different aspects related to vul-
nerability lifecycle, e.g., how long it takes for packages vulnerabilities before being disclosed. Also,
they analyzed how long a vulnerability report takes before being publicly disclosed (public level).
Therefore, our levels are defined based on existing practices of reporting security vulnerabilities.

4 STUDY DESIGN

In this section, we describe the research questions (RQs) that drive our investigation and our
process to collect a dataset of mature and active Node.js applications for our study.

4.1 Research Questions

We leverage the collected data to answer the following research questions:

• RQ1: How often do Node.js applications depend on vulnerable dependencies? How discov-
erable are their vulnerable dependencies?
• RQ2: Who is responsible for the dependence on publicly known dependency vulnerabilities?
• RQ3: For how long do applications depend on publicly known dependency vulnerabilities?

4.2 Data Collection

Our study examines vulnerable dependencies in Node.js applications, particularly applications that
use the Node Packages Manager (npm) as dependency management [51]. We opt to focus on
Node.js applications due to its popularity and importance in the current development landscape.
JavaScript is currently the most popular programming language in the world [59] with a vibrant
and fast-growing ecosystem of reusable software packages [10].

To perform our study, we leverage two datasets: (1) Node.js applications that use npm to manage
their dependencies and (2) Security vulnerabilities that affect npm packages. To do so, we (i) obtain
the Node.js applications from GitHub, (ii) extract their dependencies, and (iii) obtain the security
vulnerabilities for npm packages from npm advisories [50].

(i) Applications Dataset. To analyze a large number of open source Node.js applications that
depend on npm packages, we mine the GHTorrent dataset [39] and extract information about
all Node.js applications hosted on GitHub. The GHTorrent dataset contains a total of 7,863,361
JavaScript projects hosted on GitHub, of which 2,289,130 use npm as their package management
platform (i.e., these projects contain a file called package.json). Moreover, since both Node.js pack-

ages and applications can use GitHub as their development repository, and our applications dataset
should only contain Node.js applications, we filter out the GitHub projects that are actually npm
packages by checking their GitHub URL on the npm registry. The main reason that we focused on
applications and not packages is that packages become exploitable when used and deployed in an
application. This filtering excludes 328,343 projects from our list of GitHub projects, as they are
identified as packages and not Node.js applications.

Inspired by previous studies [40, 42, 47], projects in GitHub are not always representative of
mature software projects we aim to investigate. Hence, we refined the dataset to focus on projects
that are active and more likely to be mature software projects, by including applications that satisfy
the following criteria:

• Non-forked applications, as we do not want to have duplicated project history to bias our
analysis.
• Applications that depend on more than two dependencies.
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Table 1. Statistics of the 6,546 Studied Node.js Applications

Metric Min. Median(x̄) Mean(μ) Max.

Commits 100 326 1,035.47 77,271
Dependencies 3 23 27.93 134
Developers 3 5 6.33 62
Age (in years) 5 7.24 7.53 12.81
Stars 1 11 405.73 56,661
Forks 1 7 123.34 16,841

• Applications that have at least 100 commits by more than two contributors, which indicates
a minimal level of commit activity.
• Applications that have had their creation date (first commit) before January 1, 2017. Since

vulnerabilities take on median three years to be discovered [31], applications in our dataset
need to have a development history long enough to have had a chance for their vulnerabili-
ties to be discovered.
• Applications that have at least one commit after January 1, 2020, as we want to analyze

applications that had some level of development activity recently.

After applying these refinement criteria, we end up with 6,546 Node.js applications that make
use of npm packages. Table 1 shows the descriptive statistics on the selected Node.js applications
in our dataset. Overall, the applications in our dataset have a rich development history (a median of
326 commits made by five developers and 7.24 years of development lifespan) and make ample use
of external dependencies (a median of 23 dependencies). Inspired by prior work (e.g., Reference [2]),
we purposely did not want to restrict our project dataset to only the most active projects, because
many projects are updated infrequently, but are actively used by project users. For example, Strider-
CD/strider project is an open-source continuous deployment platform. Although the project is
infrequently updated, it seems to be commonly used by users (more than 445 forks and 4.6K stars).

To further understand the characteristics of the projects in our dataset, we collected more statis-
tical information. Inspired by prior work (e.g., References [27, 47]), we calculated two main metrics:
number of Stars & number of Forks. We found that the projects in our dataset have a community
interest in them (the median number of stars = 11), and the projects are attracting several users
and contributors (the median number of forks = 7). We have incorporated such analysis in Table 1.

Moreover, to shed light on the domain of the examined projects, we manually classified a sample
of projects in our dataset. We randomly selected a statistically significant sample (95% confidence
level) of the projects (i.e., 354 projects). Then, for each project, the first author of the article in-
spected the description of the projects (utilizing the Github page and the project page of the repos-
itory) to provide a brief description of the application. After that, the author assigns a domain label
for each project. The labels were also discussed by the first and second author to reach a consensus
all of them. The projects are classified into the following four domains:

• Software tools (173, 48.87%): repositories that support software development tasks, such
as IDEs, package managers, deployment frameworks, and compilers (e.g., twitter/hogan.js).
• Web applications (125, 35.31%): repositories that provide functionalities to end-users, such

as browsers and text editors (e.g., atom/atom).
• Educational projects (47, 13.28%): repositories with documentation, tutorials, source code

examples, and so on (e.g., angular/angular-phonecat).
• System software (9, 2.54%): repositories that provide services and infrastructure to other

systems, such as operating systems, middleware, servers, and databases (e.g., Strider-CD/
strider).
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Table 2. Descriptive Statistics on the

npm Advisories Dataset

Vulnerability reports 1,144
Vulnerable packages 925
Versions of vulnerable packages 38,562
Affected versions by vulnerability 20,206

Our classification shows that the majority of the manually analyzed projects are of interest to both
software developers and project users.

(ii) Application Dependencies. After obtaining the applications dataset, we extract the history
of dependency changes of all applications. This is necessary to identify the exact dependency
versions that would be installed by the Node.js application at any specific point in time. Node.js
applications specify their dependencies in a JSON-format file, called package.json, which contains
the dependency list, a list of the depended upon packages, and their respective version constraints.
A version constraint is a configuration that specifies the dependency version(s) of the package
that an application is willing to depend upon [15]. Hence, we extract all changes that touched the
package.json file and associate each commit hash and commit date to their respective package.json
dependency list, creating a history of dependency changes for all applications. Note that these
dependencies are not yet resolved, that is, we only have the version constraints (not the versions)
for the dependencies of each application.

(iii) npm Advisories Dataset. To identify the Node.js applications that depend on vulnerable
packages, we need to collect information on npm vulnerable packages. We resort to the npm ad-

visories registry to obtain the required information about all npm vulnerable packages [50]. The
npm advisories dataset is the official registry for all vulnerability reports related to Node.js pack-
ages. This dataset provides some key information on vulnerable packages, such as the affected
package, the affected package versions, and the first version in which the vulnerability has been
fixed (safe version), if available. This dataset also contains the vulnerability discovery (report) time
and publication time, which we use in our approach for identifying and classifying vulnerabilities
(Section 5).

Our initial dataset contains 1,456 security reports that cover 1,234 vulnerable packages. Follow-
ing the criteria filtration process applied by Decan et al. [31], we removed 312 vulnerable packages
of the type “Malicious Package,” because they do not actually introduce vulnerable code. These
vulnerabilities are packages with names close to popular packages (a.k.a. typo-squatting) in an
attempt to deceive users at installing harmful packages. The 312 vulnerable packages account for
312 vulnerability reports. At the end of this filtering process, we are left with 1,144 security vulner-
abilities reports affecting 925 distinct vulnerable packages. These packages have combined 38,562
distinct package versions of which 20,206 are affected by vulnerabilities from our report. The col-
lected advisories dataset covers vulnerability reports created between October 2015 and May 2020.
Table 2 shows the summary statistics for vulnerability reports on npm packages.

5 IDENTIFYING AND CLASSIFYING VULNERABLE DEPENDENCIES IN NODE.JS

APPLICATIONS

In this section, we explain how we classify the discoverability levels of vulnerable dependencies
and how we use these levels to classify Node.js applications.

We illustrate our methodology in Figure 1 on an example of an application with a single vul-
nerable dependency. As we can observe, the timelines of the discoverability levels of both the
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Fig. 1. Illustration of the methodology for classifying the discoverability level of a single vulnerable depen-

dency (Package A) for an application.

Fig. 2. Approach for identifying and classifying Node.js applications affected by vulnerable dependencies.

vulnerable package and the application are different. In the example of Figure 1, the application is
only affected by a vulnerable dependency once it starts depending on the first vulnerable version
(v 1.1.1). Similarly, even if the package latest release contains a fix to the vulnerability, the appli-
cation can only benefit from it once it updates to the fixed version (v 1.1.2). This is different for
the changes of discoverability levels once the vulnerability is made public. Due to the open nature
of open source software, as soon as a vulnerability is published, an attacker can identify that the
application depends on the vulnerable version of Package A.

The goal of our study is to investigate how often Node.js applications depend on vulnerabilities
that are hidden, reported, and public. To make our analysis feasible, we focus on classifying ap-
plications at one specific point in time of the application development history, which we call the
analyzed snapshot time. We accomplish this by leveraging a three-step approach. Figure 2 provides
an overview of our approach, which we detail below:

Step 1. Extract dependencies and resolve versions. The goal of this step is to extract the appli-
cation dependencies and find the dependency version that would be installed at the analyzed snap-
shot time. For each application, we extract the dependency list (with the versioning constraints) at
that snapshot time from the history of dependency changes. After that, to find the actual version of
each dependency at the analyzed snapshot, we utilize the semver tool [58]. This tool is used by npm
to resolve versioning constraint in Node.js applications, and it provides several modules and meth-
ods that support versioning schemes [13]. For example, we use the module maxSatisfying(versions,

range), which returns the highest version in the list that satisfies the range.
We included one additional restriction to semver, that the satisfying version should have been

released (in the npm registry) before the analyzed snapshot time. For example, an application
can specify a versioning constraint (“P:>1.0.0”) at the snapshot May 1, 2016. Hence, the actual
installed version is the latest version that is greater than 1.0.0 and also has been released in the
npm registry before May 1, 2016. This step allows us to find the installed version of the dependency
at the analyzed snapshot time.

Step 2. Identify vulnerable dependency versions. After determining the resolved (and presum-
ably installed) version at the analyzed snapshot time, we check whether the resolved version is
vulnerable or not. To do so, we cross-reference the resolved versions with the advisories dataset.
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If the resolved version is covered by the advisories dataset, then we label it as a vulnerable depen-
dency version. We skip the whole next step if the dependency version has not been mentioned in
any advisory, i.e., the dependency version is not known to be vulnerable.

Step 3. Identify discoverability levels of vulnerable versions. Once we identify the vulnera-
ble dependency versions at the analyzed snapshot time, we classify each vulnerable dependency
version using one of the discoverability levels we defined in Section 3.2. To that aim, for each
vulnerable version, we compare its vulnerability discovery (report) and publication time to the ana-
lyzed snapshot time. As we stated previously (in Section 3.2), if the vulnerability was made public
before the snapshot time, then we mark the dependency version as having a public vulnerability.
If the vulnerability of the dependency was not published but only discovered (reported) before the
application’s snapshot time, the vulnerable dependency version is considered to have a reported

vulnerability. And finally, if the vulnerability was neither published nor discovered (reported) be-
fore the analyzed snapshot time, then we classify the dependency version as a hidden vulnerability.
In cases where more than one vulnerability affects the vulnerable dependency version, we label
the vulnerable dependency version with the highest level. For example, if we find that the vulner-
able version of the dependency is affected by two vulnerabilities, one classified as hidden and the
other classified as public, then we label the dependency version as having a public vulnerability at
that snapshot time.

Replication Package. While the proposed approach may seem simplistic in its principle, it com-
prises several technical challenges of processing data from npm registry API, GitHub API, and
vulnerability advisories reports, especially when considering the entire application development
history. To facilitate the reproduction and foment further research in the field, we make a well-
documented replication package publicly available [14].

6 STUDY RESULTS

In this section, we present the motivation, the approach, and the findings that answers our three
research questions (RQs).

RQ1: How often do Node.js applications depend on vulnerable dependencies? How

discoverable are their vulnerable dependencies?

Motivation: Previous studies have shown that security vulnerabilities are very common in the
npm ecosystem, with nearly 40% of all npm packages relying on code with known vulnerabili-
ties [67]. However, vulnerable dependencies can only be exploited once deployed in applications:
How many of our studied applications depend on vulnerable dependencies? Moreover, given that
the discoverability is essential in assessing the threat of a security vulnerability [52], we want
to quantify how many studied Node.js applications depend on undisclosed (low risk), reported
(medium risk), and public vulnerabilities (high risk), at the analyzed time. Answering these ques-
tions will give us a better assessment on the exposure of Node.js applications to dependency vul-
nerabilities.

Approach: To reduce the biases in our analysis, we need to account for the time it takes to discover
a vulnerability. Prior work showed that vulnerabilities in npm packages take on median three
years to be discovered and publicly announced [31]. Consequently, selecting snapshots of our
applications in 2021 will paint an incomplete picture, as most vulnerabilities recently introduced
in the package’s code could remain undisclosed for a median of three years. Since our collected
applications contain their latest commits between January 2020 and May 2020, we chose to evaluate
our applications as of May 1, 2016 (more than three years prior), which ensures that at least half
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Fig. 3. Bar-plots showing the share of the examined applications with one or more (1+) vulnerable depen-

dency, overall and per discoverability levels.

the dependency vulnerabilities introduced in the applications are reported in the current npm
advisories dataset.

Then, we answer our RQ in two steps. In the first step, we examine if the selected snapshot of
the application had at least one dependency that contains a vulnerability (irrespective of its dis-
coverability level). In the second step, we analyze only the applications containing at least one
vulnerable dependency and use the methodology described in Section 5 to classify the discover-
ability levels of all vulnerable dependencies. In addition, since some applications have more than
one vulnerable dependency, we further analyze the distribution of vulnerable dependencies in the
applications under each discoverability level.

Results: As shown in Figure 3, we found that of the 6,546 studied applications 4,445 (67.90%)

applications depend on at least one vulnerable dependency. From the 4,445 affected appli-
cations, we break down the dependency vulnerabilities by the discoverability levels and evaluate
how many applications contain one or more undisclosed, reported, and public dependency vulner-
abilities. We show this breakdown also in Figure 3. Note that the total percentage of undisclosed,
reported, and public surpasses 100%, as one application might contain dependency vulnerabili-
ties on different discoverability levels. We observe that the majority of the affected applications,
4,419 (99.42%), depend on one or more dependency vulnerabilities that were undisclosed at the
analyzed snapshot time.

In fact, on 94.26% of the cases (4,190 applications), the applications were affected only by undis-
closed vulnerabilities. Still, 206 (4.63%) applications depended on at least one package with

a public vulnerability and 45 (1.02%) applications depended on packages with a vulnerability
reported to package maintainers.

Given that applications may have multiple vulnerable dependencies, we analyze proportion
of vulnerable dependencies in each application. Figure 4 shows the distribution of the percent-
age of vulnerable dependencies per application in each discoverability level (public, reported,
undisclosed). For instance, if an application has 10 dependencies, of which only 2 contained
public vulnerabilities, then this application would have 20% of its dependencies affected by public
vulnerabilities.

In terms of public vulnerabilities, the 206 applications with at least one public dependency vul-
nerability had, on median, 6.25% of their dependencies affected by a public vulnerability, or 1 out
of 16 dependencies. The majority (80.1%) of the 206 applications depend on a single vulnerable
dependency with a public vulnerability. For example, one of the applications affected by a pub-
lic dependency vulnerability is the project Atom, a popular text editor, which has more than 40
dependencies, but it was affected by a public vulnerability on a package called marked [2].

Upon closer inspection, we found that, while the 206 applications depended on a total of 2,438
different packages, the public dependency vulnerabilities were found in only 17 packages. That
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Fig. 4. Box-plots showing the distributions of the percentages of vulnerable dependencies in the applications,

per discoverability level.

Table 3. List of 17 Packages with Public Dependency Vulnerabilities, Stating Their Domain, Frequency,

and Popularity (# Weekly Downloads)

Vulnerable Package Domain % Affected Applications # Downloads

lodash Modular utilities. 82 40M
morgan Request logger middleware. 79 2M
moment Parse and manipulate dates. 60 15M
request Simplified HTTP client. 54 16M
method-override Override HTTP verbs such as PUT or

DELETE.
50 472,927

mongoose MongoDB object modeling tool. 45 1M
debug Debugging utility. 34 148M
sequelize ORM tool for databases, e.g., Postgres,

MySQL.
28 1M

pg PostgreSQL client for Node.js
applications.

28 2M

mysql Node.js driver for mysql. 24 689,626
jsonwebtoken An implementation of JSON web tokens. 23 8M
superagent Client-side HTTP request library. 17 5M
node-uuid Used for the creation of RFC4122 UUIDs

for distributed computing environment.
17 849,855

mime A library for MIME type mapping. 16 41M
jquery A library for DOM operations. 16 3M
jwt-simple JWT (JSON Web Token) encode and

decode module.
8 192,007

handlebars A templating languages that keep the
view and the code separated.

8 8M

is, the public dependency vulnerabilities occurred in less than 1% of total dependencies, but could,
nevertheless, represent the highest threat of exploitation on those applications. Table 3 shows a list
of the 17 packages along with some meta-data to help us better understand the packages’ use case,
e.g., their domain/functionality, frequency, and popularity. From the table, we can observe that
the 17 packages are popular packages (have millions of weekly downloads) and quite common
in most of the affected applications. For example, the vulnerable packages lodash and morgan
are used in 80% of the affected projects. Such packages are common, because they provide basic
but essential functionalities that support projects from different domains. For instance, the lodash
package provides methods for iterating arrays, objects, and strings. The morgan package simplifies
the process of logging API requests in the application.

Such results may indicate that most projects (regardless of the project type/domain) are

subject to being affected by some popular vulnerable dependencies. In other words, the
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Table 4. Ranking of the Five Most Commonly Found Vulnerability Types

Vulnerability Type # Affected Applications

Prototype Pollution 1,482
SQL Injection 974
Regular Expression Denial of Service (ReDoS) 771
Remote Memory Exposure 473
Cross-Site-Scripting (XSS) 466

packages with the most vulnerabilities affecting the applications are utility packages, which are
used by many different types of applications. Therefore, application developers need to pay higher
attention to specific packages to track their updates and security issues. Also, maintainers of those
packages need to be responsive and seriously consider finding and fixing security issues as fast
as possible to prevent dependent applications from being impacted. Interestingly, we notice that
some of the 17 packages (e.g., node-uuid, request) have been deprecated, but are still used in some
applications with a vulnerable version. Application developers need to be careful about using such
packages, as they may be unmaintained and will no longer be updated by package maintainers.

Our previous results show that a set of popular dependencies are the main cause of affecting
the projects with public discoverability vulnerabilities. However, it is still unclear the risk types
associated with such vulnerabilities in the dependencies. Therefore, in this analysis, we investi-
gate the types of dependency vulnerabilities that affect the projects. Such analysis is important
to answer the following question: What are the most common types of vulnerabilities that affect
the project dependencies? Each vulnerability report (in the npm advisories dataset) is associated
with a Common Weakness Enumeration (CWE), aiming at categorizing vulnerabilities based
on the explored software weaknesses (e.g., XSS, Buffer Overflow). We examine the frequency of
vulnerability types to establish a profile of the vulnerabilities in the affected project. Doing so is
important to understand the distribution of threat types in the projects.

To perform our analysis, we identify the vulnerability type associated with each vulnerable
dependency that affects each project (at the latest snapshot). Then, we count the total number of
affected projects by each type.

While we found that the projects are affected by 149 distinct CWEs, five vulnerability types

(CWEs) are affecting the majority (77.98%) of the projects. Table 4 lists the top five vulner-
ability types that affect most of the projects in our dataset. As we can see, three types of them
(i.e., SQL Injection, Remote Memory Exposure, XSS) are among the top ten security vulnerabilities
as ranked by NVD [4]. However, two other types (i.e., Prototype Pollution and ReDoS) are not
among the top-ranked type by NVD, yet they frequently affect the projects in our dataset, which
can expose the projects to a large threat in practice. For example, Prototype Pollution is the most
common type, with 1,482 projects affected by the vulnerability. Also, ReDoS affects more than
771 projects in the dataset.

Upon a close investigation, we find that such common vulnerability types come from specific
packages. For example, the package lodash is the reason for the projects being affected by the Proto-
type Pollution vulnerabilities. Similarly, only four packages are the source of ReDoS vulnerabilities
(i.e., moment, method-override, debug, mime).

Interestingly, some recent research work has proposed techniques to effectively detect such
vulnerability types (Prototype Pollution and ReDoS). For example, Li et al. [45] proposed a static
taint analysis tool to detect prototype pollution vulnerabilities in Node.js packages. They found
61 previously unknown vulnerabilities. Also, Davis et al. [29] studied the impact of ReDoS vulner-
abilities in npm and PyPi and found that thousands of regexes are affecting over 10,000 modules
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across diverse application domains. Therefore, our results suggest that researchers should direct
their efforts to improve practices and tools that tackle such vulnerability types, which would bring
significant benefits to a wide range of software projects. Moreover, package maintainers are en-
couraged to widely adopt such research tools to constantly detect their vulnerabilities and fix them
as soon as possible.

In terms of reported vulnerabilities, we can observe from Figure 4 that reported vulnerabilities
are present in only 45 applications (1% of the affected applications). The median rate of depen-
dencies with reported vulnerabilities in these 45 applications is 5.5% (1 out of 18 dependencies).
It is notable that we find such a small share of applications that depend on reported dependency
vulnerabilities. This is attributed to the npm policy for managing vulnerabilities: The policy states
that the reported period of a vulnerability lasts at most 45 days, i.e., the vulnerability is published
after 45 days of being reported to maintainers [12]. This limits how long a vulnerability can remain
reported, thus, explaining the small occurrence of vulnerabilities at this stage.

Finally, Figure 4 shows that half of the 4,419 applications had at least 13.63% of their depen-
dencies affected by undisclosed vulnerabilities. That is, on median, 3 out of 22 dependencies are
affected by undisclosed vulnerabilities that would be reported and published after May 2016.

Our findings show that 67.9% of the studied applications depend on vulnera-

ble packages. The majority (94.26%) depended only on undisclosed dependency

vulnerabilities. Still, 206 applications (4.63%) depended on packages with public

vulnerabilities.

RQ2: Who is responsible for the dependence on publicly known dependency

vulnerabilities?

Motivation: In RQ1, we observe that a sizeable number of the affected applications (206 applica-
tions = 4.63%) depend on packages with public vulnerabilities. In such cases, the developers of the
applications could know about the presence of the vulnerability in the affected dependency, and,
hence, should avoid using that vulnerable version, if a fix is available. Much prior work (e.g., Refer-
ences [42, 54]) focuses on studying whether application developers update their vulnerable depen-
dencies or not. That said, they do not consider studying why the applications end up depending on
package versions with public vulnerabilities. Given that public discoverability vulnerabilities are
critical and have a high chance to be exploited from the point of adoption on, RQ2 aims to investi-
gate who is mostly responsible for the discoverability problem to understand how we can mitigate
such issues. For example, if package maintainers are not providing a fix before the vulnerability
publication time, then this means that there is a need for designing a better disclosure process that
gives maintainers more time to fix the vulnerability and release it to package users. Inspired by the
git-blame command that is used to examine who is responsible for the modifications, we want to
know who is responsible (to “blame”) for not fixing vulnerable packages—the package maintainers
for not providing a version that fixes a public vulnerability—or the application maintainers for not
keeping their applications up to date.

Approach: To perform our investigation and answer who is responsible for the public vulner-
abilities in applications, we check—for each vulnerable package—the availability of a safe (non-
vulnerable) version of the package at the analyzed snapshot time. Note that we analyze this RQ at
the same snapshot that we analyzed in RQ1 (i.e., May 2016). Depending on such availability, our
analysis has one of two outcomes:

• Package-to-blame: if at the analyzed snapshot, no safe version has been provided by the
package maintainers for the public vulnerability. As the publication of a vulnerability comes
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Table 5. The Percentage of Vulnerabilities Caused by the Lack of

Available Fix Patch (Package-to-blame) vs. Caused by the Lack of

Dependencies Update (Application-to-blame)

Snapshot Package-to-blame Application-to-blame

1 May 2016 9.24% 90.76%

after a period of 45 days, we consider the package maintainers the responsible for the depen-
dency public vulnerability in applications.
• Application-to-blame: if there is already a released safe version of the vulnerable package

but the application continues to rely on an (old) version with a public vulnerability. Appli-
cation developers should monitor their dependencies and update to releases without public
vulnerabilities, hence, we consider the application maintainers responsible for depending on
a vulnerable package version.

Note that we check (for each dependency vulnerability) whether there was a fixed version of the
vulnerable package at the time of analysis. Therefore, we had to do the checks at the vulnerability
level, given that some projects were affected by more than one vulnerability.

Results: Table 5 shows the percentage of public vulnerabilities based on our responsibility analysis.
We observe that for public dependency vulnerabilities, the application is to blame in 90.76%

of the cases. That means that in 9 out of 10 cases the public vulnerability had an available fix, but
developers did not update their application dependencies accordingly to receive the latest fix patch.

Therefore, and perhaps counter-intuitively, applications are not exposed to public vulnerabil-
ities, because packages have unfixed vulnerabilities. Instead, the real cause is the fact that ap-
plication developers fail to keep up or at least to inform themselves well enough about a given
dependency version. Hence, a major implication of our study is that application developers strug-
gle with keeping their dependencies up to date, which may have serious effects in the security
of their systems. In fact, there are some factors that play a role in deciding about the package
update. For example, gaps in continuous integration (e.g., breaking changes and compatibility is-
sues) can lead to ignoring the package update. Mirhosseini and Parnin studied the impact of using
automated tools to update packages and found that such tools can lead to a higher rate of noti-
fication fatigue, issues in continuous integration, and tool design issues that can interfere with
a developer’s productivity [47]. Such factors indicate that software projects might not address a
vulnerability-related update, though developers could be aware of the update.

To have a better understanding of our results, we investigate how much effort would developers
need to migrate to a safe version of their packages. npm adopts a semantic version scheme [58]
where package maintainers are encouraged to specify the extent of their updates in three differ-
ent levels: (1) patch release, which indicates backward compatible bug fixes; (2) minor release,
which indicates backward compatible updates; and (3) major release, which informs developers
of backwards-incompatible changes in the package release. Hence, patch and minor updates are
deemed backwards-compatible and may be performed at a lower migration cost, while major re-
lease updates incur on a high migration cost, as developers have to adapt their code to the new
package API.

Once we take the update levels into consideration, we found that, in 43.07% of the public

vulnerabilities, the fix is only available in another major release of the package. For in-
stance, an application depends on P:1.0.0, and the fix patch was only released for a major version
2.0.0. Hence, to benefit from a fix patch in such a case, developers are required to adapt their code,
imposing significant migration costs, especially for large projects that depend on dozens of pack-
ages. Furthermore, this shows that relying on automatic updates at the level of patch and minor
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releases (as recommended by npm [15]) does not completely prevent public vulnerabilities for
affecting Node.js applications.

In 9 out of 10 cases, the main cause of dependence on packages with public vulner-

abilities is the lack of dependency updates. However, in 43% of the cases, the fix

is only available on another major version of the package, incurring insignificant

migration costs for application developers.

RQ3: For how long do applications depend on publicly known dependency

vulnerabilities?

Motivation: Previous RQs show that a small but significant number of applications are exposed
to public discoverability vulnerabilities, mostly due to a lack of dependency updates. In particular,
the result of RQ2 shows that mostly the applications are to blame for being affected by a vulnerable
package (since they do not update to a safer version at analysis time). Still, the picture might not be
as bad as it seems, because some applications could adopt the fixed version rapidly after adoption
of a vulnerable dependency (within a few days). Hence, to better understand how bad the lagging
situation is, RQ3 examines how long it takes for the application to fix dependency vulnerabilities
with the public discoverability level. Once again, we focus on public discoverability vulnerabilities,
as they pose a higher chance of being exploited. Public discoverability vulnerabilities that affect
the dependent application for a long time can leave an open channel for successful attacks, as
shown in cases such as the Heartbleed incident [33]. Prior studies have examined the time to dis-
cover or fix vulnerabilities, e.g., the study by Decan et al. [31] examines the vulnerabilities at the
package level in npm, investigating how long it takes to discover and publish new npm vulnerabil-
ities. Our RQ3 complements these studies by analyzing the risks of vulnerable dependencies in the
Node.js applications, aggregating the vulnerability lifecycle through the discoverability level met-
ric. Hence, we investigate how long applications remain dependent on a package version affected
by a public vulnerability. Answering this question will give us insights into the prioritization of
patching public dependency vulnerabilities that affect an application.

Approach: We continue to focus our analysis on the 206 applications that depend on public depen-
dency vulnerabilities. Then, for each application, we measure the time period (in days) of which the
application remained affected by a public dependency vulnerability. We constrain our analysis to
one year, from January 1, 2016, to the December 31, 2016, to have an easy to interpret and compara-
ble time-frame. Note that an application could have been affected by different public vulnerabilities
in different segments, e.g., from May 1, 2016, to June 1, 2016, and then from September 1, 2016, to
December 1, 2016. In such cases, we sum all such periods (i.e., add up the number of days).

To present this analysis, we conduct a survival analysis method (a.k.a. event history analy-
sis) [17]. The survival analysis is a non-parametric statistic method used to measure the survival
function from lifetime data where the outcome variable is the “time until the occurrence of an
event of interest.” In the context of our study, we are interested in the time period that an ap-
plication remains (survives), depending on a public dependency vulnerability. We use the non-
parametric Kaplan-Meier estimator [41] to conduct the survival analysis, as used in previous stud-
ies [19, 30, 31].

Results: Figure 5 presents the survival probability for the applications depending on a public
dependency vulnerability in the year of 2016. As we can observe, half the applications remain

exposed to a public dependency vulnerability for at least 103 days. Such a long exposure of
applications is concerning, as it gives a considerable time window for attackers’ exploitation.
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Fig. 5. Kaplan-Meier survival probability for affected applications with a publicly known vulnerability.

Fig. 6. Scatter plot showing the correlation analysis of number of commits vs. number of days.

One possible reason that such applications had not fixed the public vulnerability for a long time
is that those applications are not actively being developed during the year of 2016. To investi-
gate this possibility, we examine the development activity of applications during the period that
they remained affected by public vulnerabilities. To do so, we measure the application activity by
counting the number of commits an application had during the time being affected by a public
vulnerability. For example, if an application was affected by a public dependency vulnerability be-
tween May 1, 2016, and August 15, 2016, then we calculate the total number of commits within
that period. Then, we plot both the number of commits and the number of days during which an
application had been affected by a public vulnerability.

Figure 6 shows the scatter plot of both variables number of commits vs. number of days (affected
by a public vulnerability). We draw a trendline in Figure 6 to study the relationship between the
variables. We can observe that there is no clear pattern of the dots; indicating no correlation be-
tween the application activity and the duration of which an application had been affected by a
public dependency vulnerability (Pearson corr = −0.066).

In a period of a year, half of the applications with public dependency vulnerabilities

remain exposed for a long time (103 days) before vulnerabilities are removed from

the applications.

7 DISCUSSION

In this section, we discuss our results further by reflecting on two aspects: the severity of public
dependency vulnerabilities and the evolution of discoverability levels in the studied applications.

7.1 Severity vs. Discoverability

As we observed in all our RQs, around 5% of the affected applications depend on public dependency
vulnerabilities at a specific point in time, however, what is the severity of these vulnerabilities? Our
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Table 6. The Share of Applications with One or

More (1+) Public Dependency Vulnerabilities per

Severity Levels

Severity Levels Affected Applications

Low 172 (83.49%)
Medium 167 (81.06%)
High 140 (67.96%)
Critical 59 (28.64%)

study is centered on the discoverability of vulnerabilities in software dependencies, that is, their
potential for being exploited. However, a public vulnerability can have a high chance of exploita-
tion according to our classification but cause a low impact if exploited (low severity level). Hence,
we discuss the severity of the public vulnerabilities to better understand the potential impact of
these cases.

The npm advisories associates each package vulnerability report with its severity level [49].
Severity level has four possible levels, Low, Medium, High, and Critical, which are assigned man-
ually by the npm team. Vulnerabilities clasified as High or Critical are considered of high impact
and need to be addressed immediately by software maintainers [49]. By cross-referencing our
dataset with the severity reports, we report in Table 6 the distribution of the severity levels of the
206 applications with public dependency vulnerabilities. Once again, the total percentage of Low,
Moderate, High, and Critical surpasses 100%, as some applications contain multiple dependency
vulnerabilities on different severity levels. As shown in Table 6, of the 206 applications that are
affected by public dependency vulnerabilities, 172 (83.49%) applications are affected by at least one
vulnerable dependency of low severity. Still, a majority of 140 (67.96%) applications are affected by
public vulnerabilities classified as high severity. In 59 (28.64%) applications, the public vulnerability
was classified as critical, given their potential for exploitation. These results dismiss the idea that
applications only depend on public dependency vulnerability with low impact of exploitability.
More than 140 applications had dependencies with public vulnerabilities where analysts classified
them as of high and critical impact, a dangerous combination for the health of those software
projects.

7.2 Project Evolution vs. Discoverability

Our study thus far has been conducted on one snapshot of the examined applications (RQ1). How-
ever, our results might change if the study would be performed at different stages of a project’s de-
velopment cycle. We would like to determine whether our results generalize to different historical
snapshots of the application development. Hence, we investigate the evolution of discoverability
levels across different snapshots of applications’ development.

Since each application has different lifespans, we want to find a measure that makes comparing
them feasible. To do so, we normalize the applications by segmenting the lifetime of each appli-
cation into five equal intervals (each containing 20% of an application’s lifetime by time in days).
Then, we perform the same anlaysis conducted in RQ1 on the last snapshot of these five intervals.
For this analysis, we only consider the 4,445 applications with at least one vulnerable dependency,
as identified in RQ1.

Table 7 shows the percentage of applications that have at least one vulnerable dependency for
the five analyzed snapshots across their lifetime, along with the distribution of their discover-
ability levels. We recall that the snapshot of 100% represents applications analyzed on May 2016,
the same snapshot analyzed in RQ1. Overall, we found that the proportion of applications with
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Table 7. The Percentage of Vulnerable Applications at Different Historical

Snapshots, per Discoverability Level

Application

Snapshot

Affected

Applications

Applications

Undisclosed Reported Public

20% 4,215 (64.39%) 4,202 16 101
40% 4,277 (65.34%) 4,261 27 122
60% 4,372 (66.79%) 4,352 32 142
80% 4,421 (67.54%) 4,398 41 171
100% 4,445 (67.90%) 4,419 45 206

one vulnerable package remain steady between 64 to 67% of the analyzed applications. The major
findings in RQ1 hold for all snapshots: There is a predominance of applications with undisclosed
vulnerabilities, followed by a small share with public and even smaller share with reported depen-
dency vulnerabilities. While the number of affected applications have increased as the applications
evolve, it is noteworthy that the number of applications exposed to public vulnerabilities more than
doubled since the snapshot 20% (from 101 to 206 applications). To conclude, our complementary
analysis shows that the trends observed in RQ1 hold at different stages of the projects.

8 TOOL SUPPORT: DEP-REVEAL

A major problem of vulnerabilities in software dependencies is the lack of developers’ awareness
to security vulnerabilities in their dependencies [42]. Developers need better tools to help them
identify the occurrence of vulnerabilities and how timely package maintainers respond to reported
vulnerabilities, which affects the discoverability we studied in this article. To address this problem,
we build a tool called DepReveal, which uses the approach described in Section 5 to generate
analytical reports of dependency discoverability levels for a GitHub Node.js project. DepReveal
is open source, publicly available, and can be easily integrated in any GitHub npm project.

The tool (DepReveal) works as a prototype or proof of concept that generates analytical reports
of npm packages used in a GitHub Node.js project, which could have the potential to help devel-
opers in many ways, as follows:

• Modern applications rely on many dependencies, and the number of dependencies is grow-
ing over time. Therefore, application developers struggle to track all these dependencies. In
fact, developers should give more priority to dependencies that are frequently affected by
vulnerabilities during the development lifetime. To help with this, our tool prototype can
provide developers with the frequency in which certain dependencies have become vulnera-
ble in the past to grab the risks of depending on such packages and better plan their project
maintenance in the future.
• Moreover, the tool can provide developers with the history of all vulnerable dependencies

of the application to understand the duration in which the application became at risk of
a public discoverability vulnerability in the past. Packages that do not update their code to
address reported vulnerabilities incur a high risk for applications that use them and should be
avoided by critical applications. We believe that such information is important for developers
to build a more fine-grained picture of the risk of application dependencies, not only using
automated tools (e.g., Dependabot) to update each and every package in the application.

Our tool generates four different reports to help developers understand: (1) the discoverability
level of dependency vulnerabilities, (2) the frequency of dependency vulnerabilities per discover-
ability level, (3) the period of package exposition to discoverability levels, and (4) what package
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Fig. 7. Screenshot of the DepReveal website showing its interface and the recently analyzed repositories.

Fig. 8. Screenshot of the generated dependency discoverability graph for the atom application using

DepReveal.

versions account for those dependency vulnerabilities. Figure 7 shows a screenshot of the DepRe-
veal’s interface.

Next, we explain two of the most insightful reports generated by our tool. Inspired by the
Github’s Contributions Activity Graph, DepReveal generates a Dependency Discoverability

Graph, which shows the historical exposure of the application to dependency vulnerabilities. We
show in Figure 8 a screenshot of this report generated for the atom application [3]. Each cell
represents a day in the history of the application during a year, and the colors represent the dis-
coverability level, with dark red indicating exposure to public vulnerabilities. In the example, it is
easy to see that atom was exposed for 14 weeks to public dependency vulnerabilities in 2016, by
seeing how many columns show the darker red color. Users can get more information about the
date by hovering the mouse over the cell.

Period of Package Discoverability is another report generated by DepReveal to show the
time period (in days) in which a vulnerable package affected the application, per discoverability
level. Figure 9 shows a screenshot of this report, generated also for the atom application. From
the Figure, we can observe that the package jquery was affected by public, reported and undis-
closed vulnerabilities during the project lifetime. Hovering the mouse over the tip of the red bar
for the jquery package, it is possible to notice that the application remained depending on a pub-
lic vulnerability in the jquery for 145 days through the entire application lifetime. Users can also
enable/disable one of the discoverability levels by clicking on the legends at the right-side of the
report plot.

Furthermore, the tool generates a CSV file that contains the analysis details for the entire ap-
plication lifetime to help a further investigation. Finally, note that we provide a command-line
version of the DepReveal, which is available from our open-source GitHub repository [8]. We
also provide a web user-interface for the tool to facilitate using and interacting with it [16].
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Fig. 9. Screenshot of the generated report period of discoverability for the atom application using DepReveal.

Comparison to Dependabot. Several dependency management tools have been proposed to
help developers better track and update their outdated and vulnerable dependencies. For example,
Dependabot is a bot that issues pull-requests (PRs) to help developers automatically update their
vulnerable dependencies through PRs [20]. While related to dependency management, DepReveal
and Dependabot have different goals:

• Dependabot’s goal is to help developers update their dependencies. It submits pull requests
to projects once their dependencies have new versions available, either to keep the depen-
dencies up to date or to respond to a publicly known vulnerability.
• DepReveal, however, helps developers at analyzing the past exposure of their dependencies

to public vulnerabilities, i.e., how often their dependencies have exposed their project to
public discoverability vulnerabilities. Hence, our tool performs a post-mortem analysis and
informs developers about how often their projects have been exposed to vulnerable depen-
dencies in the past, considering our discoverability levels.

9 IMPLICATIONS

In this section, we discuss some implications of our findings to researchers and practitioners.

9.1 Implications to Researchers

Researchers should account for discoverability to better understand practices of secu-

rity and dependency management. Discoverability is key to distinguish when vulnerabilities
require immediate action from package and application maintainers. Undisclosed vulnerabilities
are prevalent, present in the majority of studied applications (RQ1), and they tend to remain undis-
closed for many years [19]. However, the presence of undisclosed vulnerabilities does not denote
lack of dependency maintenance from application maintainers or the lack of security maintenance
from package maintainers. The way public vulnerabilities are handled by the community, however,
shows a more accurate picture of the good and bad practices related to security and dependency
management, as both package and application maintainers have to coordinate to reduce the risks
of exploits. Researchers should include discoverability to better understand the practices related to
dealing with dependency vulnerabilities and can rely on the approach we propose in the study to
implement this analysis. Our approach can also be applied in studies that aim to contrast our find-
ings on different ecosystems (Python, Go, Java) to provide a more complete picture of the problem
of vulnerable dependencies.

The lack of dependency updates remains the main responsible for public exposure

to vulnerabilities. Our results (RQ2) show that in 9 out of 10 cases, the lack of dependency
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maintenance is the main reason applications are affected by public vulnerabilities. Furthermore,
we found that it takes a long time to resolve to a fixed version (RQ3). Such persistence to vulnerable
dependencies indicates that developers do not perform a timely update to their dependencies. One
reason for that is related to the potential risks of dependency updates (e.g., breaking changes) and
the effort required to resolve them [42]. Thus, there is a need for approaches that provide devel-
opers with more confidence about the suggested dependency update. One line of work that needs
to be explored further is to investigate techniques that automatically allow client code in the de-
pendent application to catch up with the latest dependency updates. Unfortunately, the accuracy
of existing works (e.g., References [44, 61]]) tends to be limited to a particular set of APIs (e.g.,
Android APIs). Also, researchers are encouraged to propose techniques that detect breaking
changes in package updates, particularly those that are generalizable. Current works (e.g., Refer-
ence [48]) are limited to specific ecosystems (e.g., Java, NodeJS) but still can be improved to work at
scale and help developers detect breakages in practice. Such automated tools can motivate develop-
ers to perform a timely update of dependencies and catch security patches of their dependencies.

Certain vulnerability types are more frequently found in packages and can impact the

ecosystem at large. Our results (RQ1) show that certain types of dependency vulnerabilities that
affect packages are prevalent across the affected projects. For example, we found that Prototype
Pollution is the most common type, with 1,482 projects affected by the vulnerability. Also, ReDoS
affects more than 770 projects in the dataset. This suggests a potential widespread benefit from
research into the resolution or mitigation of such vulnerability types. Researchers should direct
their effort to find effective techniques that discover such types. It will also be beneficial to conduct
future research into common root causes of such vulnerability types to prevent or detect such
issues in package code.

9.2 Implications to Practitioners

Developers can use DepReveal to keep track of their vulnerability exposure in the past

and better tailor management practices. The tool prototype we propose operationalizes the
Discoverability analysis and showcases to practitioners how often their dependencies have ex-
posed their project with vulnerabilities. As discussed in Section 8, this information may help de-
velopers in two major ways. First, practitioners can prioritize maintenance tasks before release on
dependencies that are more frequently flagged as been affected by vulnerabilities. That means de-
velopers can actively monitor the project repository and its related security advisory database to
identify when a vulnerability is published as soon as possible. Second, practitioners should reassess
dependencies that expose them to public vulnerabilities without an immediate fix patch. While our
results show that this is rare, publishing a vulnerability without a fix patch is a sign of inefficient
security policies, as it puts dependent projects at risk. Whenever possible, practitioners should se-
lect better alternative packages that prioritize submitting a fix patch before a vulnerability is made
public.

Relying on SemVer does not guarantee that application projects receive all security up-

dates in dependencies. Our results show that using semantic versioning for automatic updates
at the level of patch and minor releases is not sufficient to prevent public vulnerabilities of de-
pendencies in Node.js applications. Our manual inspection (RQ2) revealed that in many cases the
vulnerability fix is only available in a major release of the package, which comes at the cost of
breaking changes. Tools such as Dependabot [37] help overcome this issue by helping developers
migrate even when the fix is on another major version. Dependabot also includes a method to
estimate the migration cost of security updates for dependencies, which is calculated based on the
outcome of similar updates that were already done by other projects. Hence, developers that rely
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on SemVer (as recommended) should make use of other more robust mechanism, i.e., Dependabot,
to verify if they are receiving the latest security fix patches as part of their automated dependency
update policy.

10 RELATED WORK

The work most related to our study falls into security vulnerabilities in software ecosystems. In
the following, we discuss the related work and reflect on how the work compares with ours.

10.1 Software Ecosystems

A plethora of recent work focused on software ecosystems. Several works compare different ecosys-
tems. For example, Decan et al. [32] empirically compared the evolution of seven popular ecosys-
tems using different aspects, e.g., growth, changeability, reusability, and fragility. They observed
that the number of packages in those ecosystems is growing over time, showing their increasing
importance.

Other work focused specifically on npm [36, 43, 63]. For example, Fard et al. [36] examined
the evolution of dependencies within an npm project and showed that there is a heavily interde-
pendence, with the average number of dependencies being 6 and growing over time. Wittern et
al. [63] investigated the evolution of npm using metrics such as dependencies between packages,
download count, and usage count in JavaScript applications. They found that packages in the npm
ecosystem are steadily growing. Such amounts of packages make the discovery of vulnerabilities
very difficult, given the heavy dependence on such packages and the potential security problems
in those packages.

Other studies pointed out the fragility of software ecosystems and provided insights on the
challenges application developers face. For example, Bogart et al. [22, 23] examined the Eclipse,
CRAN, and npm ecosystems, focusing on what practices cause API breakages. They found that
a main reason for breaking changes are the updates of a dependency. This finding may explain
why application developers are hesitant to update and explain why we see public vulnerabilities
impacting applications that do not update in time. The authors extended the study by including a
big survey on 18 ecosystems and repository mining methods [24]. They conducted a survey with
more than 950 participants and reported that Node.js is the ecosystem with the highest frequency
of breaking changes, while Lua, Go are one of the least frequent.

Our study differs from the prior work, since we focus on the discoverability levels of dependency
vulnerabilities in Node.js applications. Moreover, we examine the reason that public dependency
vulnerabilities exist. We also examine the time that an application stays, depending on public
dependency vulnerabilities. That said, much of the aforementioned work motivated us to study
npm and focus on examining vulnerabilities in application dependencies.

10.2 Package Vulnerabilities

Vulnerabilities in ecosystems have been studied broadly [18, 19, 42, 54]. For example, Kula et al. [42]
explored how developers respond to security awareness mechanisms such as library migration
and found that developers were unaware of most vulnerabilities in dependencies. Pashchenko
et al. [54] indicated (based on interviews with developers) a high demand for high-level metrics
to assess the maintainability and security of software packages. Our proposed tool DepReveal
partially fulfills such a demand, since it generates analytical reports to inform developers how
vulnerable their dependences are, considering the discoverability levels. Enck and Williams [34]
proposed the top five challenges in software supply chain security. For example, one of the study
participants mentioned the challenge of being the first or last to update a dependency. Participants
in the study mentioned that there is a need to develop a policy that strikes this balance.
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More specifically, several studies focused on analyzing the impact of security vulnerabilities in
the npm ecosystem [26, 31, 67]. Decan et al. [31] found that npm vulnerabilities take more than two
years to be discovered. Zimmermann et al. [67] analyzed the maintainers role for npm vulnerable
packages and found that a small number of maintainers’ accounts could be used to inject malicious
code into thousands of npm dependent packages, a problem that has been increasing over time.
Zerouali et al. [66] studied npm vulnerable packages in Docker containers and found that they are
common in the containers, suggesting that Docker containers should keep their npm dependen-
cies updated. Bodin et al. [25] analyzed npm packages to study lags of vulnerable release and its
fixing release and found that the fixing release is rarely released on its own; 85.72% of the bundled
commits in the fixing release are unrelated to a fix. Zahan et al. [64] defined some signals that
could indicate malicious npm package, such as the presence of install scripts. Their study shows
that 2,818 maintainer accounts associated with an expired domain, allowing an attacker to hijack
8,494 packages by taking over the npm accounts. Similar to npm packages, Wang et al. [62] found
that Java packages contained dependencies that lag for a long time and are never been updated.
Our study complements previous studies by analyzing npm vulnerable dependencies throughout
the Node.js application lifetime, aggregating the vulnerability lifecycle through the discoverability
level metric.

Other studies perform a code-based analysis to assess the danger of dependency vulnerabili-
ties [53, 55, 57, 65]. A study by Zapata et al. [65] manually analyzed 60 projects that depend on
vulnerable npm packages and found that 73.3% of them were actually safe, because they did not
make use of the vulnerable functionality, showing that there is an overestimation on previous re-
ports. Our study includes another aspect that impacts vulnerable dependencies in applications by
including the discoverability levels.

There were several efforts to assess the impact of vulnerable dependencies in dependent appli-
cations [55, 57]. Plate et al. [55, 57] proposed a code-centric tool that determines whether or not
a Java application executes the fragment of the dependency where the vulnerable code is located.
Their proposed approach is implemented in a tool called Eclipse Steady (a.k.a. VULAS), which
is an official software used by SAP to scan its Java code. Furthermore, Ponta et al. [56, 57] built
upon their previous approach in Reference [55] to generalize their vulnerability detection approach
by using static and dynamic analysis to determine whether the vulnerable code in the library is
reachable through the application call paths. Bodin et al. [26] implemented an extension of the
Eclipse-Steady tool to support JavaScript. They analyzed 42 applications to find their vulnerable
constructs, showing that a code-centric approach is viable, although there are challenges given
the dynamic nature of the JavaScript and the complexity of the npm dependencies [26]. Our tool
(DepReveal) complements these tools by looking at vulnerable dependencies through the history
of a Node.js application. DepReveal aims to increase developers’ awareness on how often their
application project is exposed to vulnerable dependencies.

Our tool could be extended to include a code-centric analysis and report the vulnerable con-
structs per discoverability analysis. However, the analysis at this level is indeed problematic due
to execution costs needed to analyze the code. Other automated code analysis tools work on vet-
ting the changes in the releases of packages to analyze their lines of code. Recently, there were
several efforts for auditing npm security vulnerabilities, both from academia [38, 60] and from
industry practitioners [5, 7].

11 THREATS TO VALIDITY

Internal Validity considers the relationship between theory and observation. Our dataset con-
tains 925 vulnerability reports available in the npm advisories dataset. There might be other vulner-
able packages that have been discovered but not yet reported. However, we leveraged an up-to-date
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dataset from npm advisories, which we believe contains the most accurate information about the
vulnerable packages reported to them.

The article only considered direct dependencies. Direct dependencies are managed (directly) by
the software project, while indirect dependencies are usually out of the control of the application
developer, as they are dependencies of a dependency, which makes it more challenging for updat-
ing them. Moreover, vulnerabilities of direct dependencies are more likely to impact the software
project, as they are directly used in the project codebase. Our technique can be extended to analyze
indirect dependencies considering the discoverability levels.

We did not consider whether the vulnerable functionality in the package actually affects the
application, i.e., whether the applications use the vulnerable code of the package; considering
this would be challenging, since our dataset is composed of thousands of applications. That said,
our analysis is in line with prior work in the area of software ecosystems, which also examine
dependencies in the package.json file to associate packages to applications.

Also, our article did not consider the stage at which a fix was released by package maintainers
or adopted by the studied application. In fact, this has been studied in prior work [19] at the
package level, e.g., the article cited in Reference [19] examines the stage at which a fixed version
was released. Still, a similar analysis at the application level could be considered in future work,
however, we found only nine vulnerabilities (affecting nine applications) that were published with
a fix available from day 1. That is, the vast majority of vulnerabilities are made public without any
fix. Unfortunately, the amount of vulnerabilities that had a fix available from day 1 is too low to
derive any meaningful comparison or insights to the community.

Finally, note that our study relies heavily on the coverage of vulnerability advisories in npm,
as well as on the consistent application of semantic versioning, which may lead to an under-
approximation that supports the argument of our article. However, our main argument is that
similar studies that use similar datasets to tackle the same aspect paint a less accurate picture of
the studied aspect.

External Validity is related to the generalizability of our findings. Our study is based on Node.js
applications that use npm. Hence, our results may not generalize to applications written in other
languages. However, the key concepts and design of our study can be applied to other package de-
pendency networks to expand the investigation on vulnerable dependencies. Our dataset contains
6,546 JavaScript applications that use npm packages. Our dataset might be considered small when
it is compared to the whole population of JavaScript applications. However, our dataset is of high
quality, since we filtered out applications that are immature and have less development history by
using the filtering criteria used by Kalliamvakou et al. [40]. Also, to our knowledge, our dataset is
considered to be among the largest number of Node.js applications analyzed.

12 CONCLUSION

Our study examines vulnerable dependencies in Node.js applications based on their discoverabil-
ity lifecycle. First, we define three discoverability levels for dependency vulnerabilities in Node.js
applications. Then, we perform an empirical study on 6,546 Node.js applications to assess how
discoverable vulnerable dependencies are. Our findings show that 67.9% of the examined appli-
cations depend on at least one vulnerable package. 99.42% of the affected applications depend
on undisclosed dependency vulnerabilities. Still, 206 (4.63%) applications were still affected by a
public discoverability vulnerability, and they often remain affected for a substantially long time
(103 days) during the application lifetime. Moreover, we examined why these applications end
up depending on public dependency vulnerabilities. We observed that the application developers
are mostly to blame, i.e., a fix for the vulnerable dependency is available but not patched in the
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application. Furthermore, we examine the relationship between the occurrence of public discover-
ability vulnerabilities and the underlying project factors. We find that such metrics do not strongly
indicate better handling of the vulnerable dependencies.

Our findings imply that accounting for discoverability analysis can help researchers better un-
derstand practices of security and dependency management. Also, researchers are encouraged to
explore approaches that consider confidence measures of dependency updates to help developers
catch up with their critical vulnerable dependencies. We developed a tool prototype that supports
our analysis approach for npm projects, which have the potential to help developers better un-
derstand and characterize package vulnerabilities that affect their applications. Finally, our result
of the relationship between project dependencies and the number of dependency vulnerabilities
shows that managing specific packages in the project will be more effective than reducing the num-
ber of project dependencies. Project maintainers can try to reduce relying on some specific popular
packages by prioritizing updates of those packages or replacing them with a single package that
covers their functionalities and has an active security track record.

Our article outlines directions for future work. For example, our discoverability analysis can be
extended to consider other data sources to enhance vulnerability risk assessment, e.g., severity,
exploitability. Such enhancement can also be integrated into our prototype tool to help developers
better analyze the risk of security vulnerabilities that affect their dependencies. In the future, we
plan to evaluate the usefulness of our prototype tool (i.e., DepReveal). Finally, we plan to examine
if our findings hold for applications written in different programming languages (e.g., Python and
Java).
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