
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353738678

How do developers use the Java Stream API?

Conference Paper · August 2021

CITATIONS

0
READS

514

4 authors:

Joshua Nostas

Universidad Católica Boliviana San Pablo Cochabamba

3 PUBLICATIONS   4 CITATIONS   

SEE PROFILE

Juan Pablo Sandoval Alcocer

Pontificia Universidad Católica de Chile

37 PUBLICATIONS   222 CITATIONS   

SEE PROFILE

Diego Elias Costa

Concordia University Montreal

65 PUBLICATIONS   650 CITATIONS   

SEE PROFILE

Alexandre Bergel

RelationalAI

229 PUBLICATIONS   1,805 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Diego Elias Costa on 06 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353738678_How_do_developers_use_the_Java_Stream_API?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353738678_How_do_developers_use_the_Java_Stream_API?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua-Nostas-2?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua-Nostas-2?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad-Catolica-Boliviana-San-Pablo-Cochabamba?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joshua-Nostas-2?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Sandoval-Alcocer?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Sandoval-Alcocer?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Pontificia_Universidad_Catolica_de_Chile?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Juan-Sandoval-Alcocer?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Costa-20?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Costa-20?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Concordia_University_Montreal?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Costa-20?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Bergel?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Bergel?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexandre-Bergel?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Costa-20?enrichId=rgreq-1605390150c81422d911737cb7a3fcc5-XXX&enrichSource=Y292ZXJQYWdlOzM1MzczODY3ODtBUzoxMDUzODIxOTQ2MDM2MjI0QDE2MjgyNjIxMzk4MjA%3D&el=1_x_10&_esc=publicationCoverPdf


How do developers use the Java Stream API?

Joshua Nostas1[0000−0002−2924−8689], Juan Pablo Sandoval
Alcocer2[0000−0002−2924−8689], Diego Elias Costa3[0000−0001−7084−2594], and

Alexandre Bergel4[0000−0001−8087−1903]

1 Departamento de Ciencias Exactas e Ingenieŕıas,
Universidad Catolica Boliviana ”San Pablo”, Cochabamba, Bolivia

joshua.nostas@ucb.edu.bo
2 Department of Computer Science,

Pontificia Universidad Católica de Chile, Santiago, Chile
3 Dept. of Computer Science and Software Engineering,

Concordia University, Canada
4 Department of Computer Science (DCC),

University of Chile, Santiago, Chile

Abstract. Java 8 marked a shift in the Java development landscape by
introducing functional-like concepts in its stream library. Java developers
can now rely on stream pipelines to simplify data processing, reduce
verbosity, easily enable parallel processing and increase the expressiveness
of their code. While streams have seemingly positive effects in Java devel-
opment, little is known to what extent Java developers have incorporated
streams into their programs and the degree of adoption by the Java
community of individual stream’s features.
This paper presents a replication study on which we analyze the stream
usage of 610 Java projects. Our findings show that the Java streams
are used mostly by software libraries rather than regular applications.
Developers rarely use parallel processing, and when they do so, they only
superficially use parallelism features and most of the parallel streams are
used on simple forEach operations. The most common used pipelines in-
volve map, filter and collect operations. We carefully describe a number
of stream idioms we identified, and detail how we addressed the chal-
lenges we faced to complete our study. Our findings will help developers
at (i) making better decisions about which features to consider when
improving the API and (ii) supporting stream-related IDEs features, such
as refactoring.

Keywords: Software Quality · Software Maintenance · Java Streams ·
Empirical Study

1 Introduction

While the notion of stream processing has been around for decades [1], the Java 8
released in 2014 officially introduces this paradigm to Java programming with the
stream library. The stream library provides a concise API for processing elements
(objects and primitives) described as a pipeline, made of aggregated operations



(e.g., map and filter). Pipelines aim at supporting a declarative programming
style: the code focuses on “what” it does as opposed to “how” it is supposed to
do it. Through the API proposed by stream, a series of collections operations
can be performed with just a few lines of code, increasing code comprehension
and allowing developers to safely exploit multi-threaded processing through the
use of parallel streams.

Java stream library overview. A stream is basically a view on a sequence
of elements (objects or primitives), organized by the underlying data structure,
a stream source. A stream source can be of any data type that implements
the interface java.util.Spliterator, collections (including arrays), and I/O
channels. Developers process a stream by defining stream pipelines, composed by
functional operations, for which the typically are filter and map, as shown in
the example of Listing 1.1.

int average = studentsList.stream()
.filter(Student::hasPassedFinalExam)
.mapToInt(Student::score)
.average();

Listing 1.1. A stream pipeline that calculates the average score of students that have
passed the final exam.

Stream pipelines are designed to be used in a functional style, thus favoring
operation composition. Each operation is implemented in a way that the stream
source is never modified, and the result of a pipeline is stored on newly created ob-
ject, making them natural to parallel processing. However, some operations may
receive a behavioral parameter, a parameter that describes a user-specified behav-
ior. In the example of Listing 1.1, the method Student::hasPassedFinalExam

is such a behavioral parameter.
To embrace this newly introduced library, numerous tools have adopted

lambdas and the stream library, and researchers have proposed new methods to
facilitate the adoption of the benefits of stream processing. Modern Java IDEs,
including IntelliJ IDEA, provide an extended support to refactor old Java code to
use Java 8 functional features [4], like collapsing for loops to the more expressive
stream pipelines. In research, some focus has been put to address the potential
performance benefits of parallel streams [11]. Streams have also reported to be a
major driver for the increase of Lambda functions in Java programming [16], due
to their benefits in expressiveness and convenience.

Despite the extensive support of tools and methods, there is little empirical
evidence on how developers have adopted stream processing into their Java
programs and what are the most used features in practice. Some studies have
investigated the broad scope of adoption of lambdas in Java [16], a critical
aspect when using behavioral parameters and therefore streams. However, having
an empirical study tailored to the usage of streams will help guide the Java
community at better providing effective updates to the Stream API, foment
better tools and help the research community at focusing on the pressing issues
facing adopters of the stream library.



Partial replication. In 2020, Khatchadourian et al. [12] presented an empirical
study on the use of the stream library in 34 Java projects and 719 code patches.
To track streams and their attributes Khatchadourian et al. use a series of labeled
transitions systems, static analysis and type-state analysis. A small set of project
make possible to fully analyze stream usage in a reasonable amount of time.
However, it may limit the generality of the findings. To address this threat, our
paper partially replicate the effort of Khatchadourian et al.. In particular, we
analyze 610 java project selected from a initial bag of 10,000 open source Java
projects hosted on GitHub. The scope of our effort is slight different, as such,
we limit our analysis to track stream pipelines fully declared within a method,
excluding inter-procedural stream operations. In particular, we focus our analysis
on answering the following research questions:

– RQ1 - What is the trend of the stream library adoption in Java projects?
Getting a picture on how do Java developers are adopting the stream library is
crucial to determine the importance of the library within the Java ecosystem.

– RQ2 - How do Java developers use streams in their projects? In particular,
we are interested in the following questions: What is the most commonly used
stream operations? What are the most commonly used pipelines?, and, What
are the common operations that developers do using streams? Understanding
how the API is used in practice is key for the stream library maintainers to
understand expectations and concern from the Java community, in addition
to improve the most used subset of operations and pipelines. Likewise, re-
searchers that have the interest on researching the Streams API, may focus
on the more prevalent cases.

Findings. Our study reveals findings related to stream pipelines usage that
largely match and complement Khatchadourian et al. study:

– Similarly than Khatchadourian et al. we found that developers rarely rely on
parallel processing, and that most of the parallel streams are used on simple
forEach operations.

– The most common used non-parallel pipelines involve map, filter and collect
operations. These results largely match with Khatchadourian et al., which
also shows that developers tend to favor more simplistic (linear) operations
rather than more specialized non-scalar reductions.

– Complementary to Khatchadourian et al., we find that most of the project
under analysis are libraries or tools for developers, only 10% of the projects
correspond to conventional applications.

– The most used Collector operations are toList, toSet, joining, and toMap.
While the API provides more advanced collector operations, they are not
commonly used by developers.

The following sections details the related work, the methodology we adopted,
and our results.



2 Related Work

Numerous studies have investigated how developers adopt language and API
features. In most of the works we discuss in this section, researchers adopt a
similar methodology to ours, from selecting projects based on popularity criteria
to mining software repositories to quantitatively assess the level of adoption
of language features from developers. Particular effort has been put towards
understanding how developers adopt unsafe language features, such as breaking
type safety in Go [7], Rust [9] and using the infamous goto command in C [18].
In the context of Java programming, some studies have investigated the usage
of Unsafe APIs [15], and dynamic type casting [14]. In both studies [14, 15],
researchers report that the use of unsafe library features is widespread in the Java
ecosystem. Developers often trade compiler checks for better flexibility, putting
their programs at a higher risk of runtime errors. Other studies focuses on source
code aspects related to memory consumption [3], performance regressions [20–22],
or complexity [8, 17].

Some works that have investigated how developers use the Java collections
API, a framework that is directly related to how developers use streams. Costa
et al. [6] investigated how developers select Java collections in their projects.
While the study showed that developers could benefit from using more specialized
data structures for better performance, developers only rarely go beyond the
general-purposed collection types. As such, several tools have been proposed to
better guide developers in selecting their data structures in Java for better time
and memory allocation [2, 5], and better energy consumption [19]. This finding
that developers only rarely tune their collections has a similar parallel to our set
of findings. In our study, we found that only in rare occasions developers make
use of more complex stream operations and the parallelism of stream pipelines.
Hence, there is the need for tools that can better guide developers at exploring
the benefits of stream parallelism.

Similarly to the Streams API, lambdas have been introduced in Java 8,
in an effort to enable Java developers to use functional idioms. The work of
Mazinanian et al. have investigated the usage of lambda functions in Java
program, including their usage in stream pipelines [16]. This study reported that
streams are frequently used as replacement to for-loops, as they provide a more
concise and easy-to-read idiom. However, the profiling of stream features used by
developers remained out the paper’s scope.

The work that is most related to ours is the work of Khatchadourian et
al. [12], in which we partially replicate in this study. Khatchadourian et al. have
investigated the use and misuse of the java stream API over 34 java projects [12].
Similarly to our findings, they have reported that parallelization is seldom used
and that developers frequently use ordered streams, which are not optimal for
parallelism. Khatchadourian et al. also reported that developers favor more
straightforward stream pipelines, which corroborated with our findings that the
most frequently used pipelines contain map-collect or filter-collect operation
chains. Developers use functional-like streams to process data but collect them
back to the imperative programming style they are most accustomed to. We



complement their work by confirming part of their results with an analysis a the
analysis of a large set of 610 projects. Furthermore, we investigate what types of
projects use Java streams which help us understand what profile of projects tend
to use streams.

3 Experimental Setup

This section highlights some aspects of the methodology we used to answer the
two research questions stated above.

3.1 Methodology

To carry out the mining of stream API usage in a large corpus of Java applications,
we use the following 3-steps process:

1. Project selections – Our very first step is to select GitHub repositories of
Java software projects, which we consider relevant for the scope of our study.

2. Detect – To detect the stream pipeline usage, we analyze the abstract syntax
tree (AST) of each Java file for all selected projects. Stream usage, expressed
in term of pipelines, are extracted from the AST. In particular, the source
code mining focuses on extracting components of a pipeline: stream facto-
ries (studentsList.stream() in Listing 1.1), intermediate operations (filter,
mapToInt), and terminal operations (average).

3. Categorize – We quantitatively and qualitatively analyze stream pipelines
and characterize their usage.

The following sections details each one of these steps.

3.2 Challenges of Using Type Inference

We consider a stream API usage as a method call performed on a stream object.
As such, determining whether or not an object is a stream is key in our analysis.
Since most GitHub repositories contain application source code and rarely contain
the result of a compilation process, we need to identify stream API usage by
solely inspecting source code. Type inferencers are tools designed to determine
the type of each object and the signature of each method call. Using a type
inferencer to identify stream usage is therefore appealing. Despite their solid
theoretical foundation, using type inferencers in our context suffers from two
different aspects:

Project Dependencies. The precision of the type inference heavily depends on
the resolution of dependent libraries used by each project. However, many projects
in GitHub do not have their dependencies explicitly declared. This fact may limit
the accuracy of our study. Previous studies show that automatically download
all the dependencies of great portion of the projects is an open problem [13].

Overhead. Infering the type of objects from the source code of a large project is
time consuming. Consider the JavaSymbolSolver type inferencer5. Computing

5 https://github.com/javaparser/javasymbolsolver



the type of each variable and the signature of each method call takes hours for
any sizeable number of Java source code files. A rough estimation based on an
initial estimation indicates that type inferencing 10k projects takes up to 48 days
of computation6.

Because of the aforementioned challenges, we adopted a sequentially staged
process to investigate stream usage in a large number of projects. The goal of
this style of methodology is to reduce the overhead of running type inference
analysis, by removing projects that clearly do not rely on streams. We describe
this in more detail in Section 3.3.

3.3 Sequential Staged Project Filtering

We start our study with a initial sample of 10,000 most starred Java projects
from GitHub. Their stars range from 142 to 44,779 stars. Stars on GitHub are
used as a token of appreciation from their users and also indicates how often
people tagged projects for later exploration. Hence, stars are considered as a
good proxy for project popularity and is commonly used on empirical studies to
filter out unpopular projects [6, 7].

Initial project filtering. To discard toy or small projects, we initially select
for further analysis projects that meet following criteria:

– Projects not archived, disabled or forked, as these projects do not have current
development activity.

– Projects with 3 or more contributors.
– Projects with more than 50 commits.

After applying the filter, from the initial 10,000 projects, we were left with 5,386
projects for further analysis.

Data Cleaning. To discard educational or example projects, the first three
authors (with experience in Java development) manually read the project name
and description to categorize each one of these 5,386 projects. We discard projects
that were categorized by at least two authors as toy, educational, or example
projects. In total, we discard 317 projects. Therefore, after this step our sample
is reduced from 5,386 projects to 5,096 projects.

Sequential Staged Filtering. Due to the two challenges described in (Sec-
tion 3.2), we cannot blindly run a type inference on our projects. Instead, we
adopt a sequential staged filtering of the projects: from the set of 5,096 Java
projects, we apply a sequence of filtering and expansion techniques: a sequence
of keyword filtering, data cleaning, resolving dependencies, and type inference
filtering.

Keyword Filtering. Downloading the dependencies and inferring the type of
all method calls in our initial set of projects is too costly to carryout. Instead,

6 It takes 28 hours to process 7,700 Java source code files, and the 10k projects contain
317,032 source files.



we perform a keyword filtering on the projects that consists in reviewing each
method call of all the Java projects. The Java stream library provides a number
of ways to directly create Stream objects, the most common are: of, stream and
parallelStream. This keyword filtering step consists in detecting projects that
have at least one method call with these keywords. As a result, we found 2,189
projects that meet this criteria.

Download Dependencies. We automatically download all project dependencies
that use Gradle and Maven. Our automation uses two standard commands
to download the dependencies7. From the 2,189 projects, 1,193 use Maven for
dependency management, 908 use Gradle, and 88 use another project management
tool. Using our process, we successfully download the dependency of 851 projects,
682 in Maven, and 169 in Gradle. Since our analysis highly depends on being
able to determine if a method call is related to a stream object, we use these 851
project as a base of our study.

Type Inference Filtering. We use the JavaSymbolSolver type inferencer to
determine the type of each method call in the 851 projects. From total method
calls, 17% of them cannot be inferred. The reason is because the current type
inference libraries have also a number of limitations in particular cases (e.g., high
polymorphic operations and reflection). After the type inference, we found that
241 projects do not contain any method call related to stream. Therefore these
are considered false positives and were discarded from our study. Finally, we
consider the remaining 610 projects as the target projects for our stream usage
study. You will find the information about the projects under study online 8.

3.4 Detecting Stream API Usage

We use the Java Parser library to analyze the projects under study. We parse all
the files of each project, build an Abstract Syntax Tree and look for all method
calls nodes in the tree that are performed on a stream object.

Stream Usage Detection. We categorize the method calls as follows: 1) Stream
factory, a method call that returns a stream but the receiver object is not a
stream; 2) Stream intermediate operation, a method call that returns a stream
and the receiver is a stream, 3) Stream terminal operation, a method call that
does not return a stream but the receiver is a stream.

Pipeline Detection. We define a pipeline a sequence of method calls that follow
the pattern: stream factory, followed by a sequence of intermediate operations,
and ended by a terminal operation.

7 mvn dependency: copy-dependencies and
gradle dependencies

8 https://bit.ly/2UPiGIO



3.5 Categorization

To answer our research questions, we categorize the 610 projects and the stream
usage as follows:

Projects Categorization. Two authors carefully read the project title, descrip-
tion and project page to categorize the projects into one of the two categories:

– Frameworks-Libraries-&-Tools : programs that developers use to create, debug,
maintain, or otherwise support other programs, and programs esigned to be
reused by other programs, often for software development.

– Applications: conventional applications, which do not fit in any of the other
categories; this is the overwhelming majority

First, authors categorize projects separately. Then, they compare their categories
and when to a consensus about which categories assign to each project.

Pipeline Categorization. We consider a pipeline as a method call chain on
a stream object. For this categorization, we consider the set of consecutive
operations done over a stream. This categorization was done automatically using
a java parser and a type inference. We consider only operations performed over a
stream object as receiver.

4 Results

4.1 What is the stream usage trend?

We present in Figure 1 a stacked bar plot showing (i) the number of projects
created by year and (ii) the portion of these projects resulting from the key-
word filtering and type filtering. Our approach estimate that the portion
of the projects that use at least once the stream API is about 21%
(2, 189/10, 000). Note the real proportion of stream adoption is likely to be smaller
since we cannot efficiently avoid false positives without downloading dependencies.
The figure also indicates that the share is in constant increase over the year,
reflecting an incremental and steady adoption of the stream library by
practitioners.

Regarding the type of projects that use streams, we present in Table 1 the
distribution of the 610 projects that use streams across the two categories. Our
results indicate that the majority of projects (90%) that use streams are
Frameworks, Libraries and Tools, rather than Java applications. Note
that the proportion may differ in the 2,189 projects.

4.2 What are the most used pipelines?

We present in Figure 2 and Figure 3 the most used stream pipelines from the
610 projects in our dataset. We found that only 113 (18%) of them create at
least one parallel stream object, while the remaining 497 (82%) use solely non-
parallel streams. Furthermore, from all the stream factories in these 113 projects,



0

500

1000

1500

2000

2500

3000

19
97

19
98

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

610 projects - After type filtering 2189 projects - After keyword filtering 10k projects

Fig. 1. Projects by Creation Year

Table 1. Number of projects by category that have at least one stream pipeline.

Category # Projects %

Frameworks, Libraries and Tools 549 90%
Applications 61 10%

only 20% of them create a parallel stream. This finding suggests that even in
projects that use parallel streams, its usage is very infrequent. We conclude that
developers rarely rely on parallel processing despite the large number of
features for parallel computing provided by the Java Stream API. Figure 2 lists
the five most popular sequential pipelines and Figure 3 lists the five most popular
parallel pipelines. The figure also indicates that most of the parallel streams
are used on simple forEach operations, thus avoiding a large number of
expressive features for parallelism.

On the other hand, Figure 2 also shows that the most common used
non-parallel pipelines involve map, filter and collect operations. These
are arguably the most straightforward stream operations in the API, showing
that developers prefer simple pipelines that are easy to understand and maintain.
The most frequently used pipeline stream-map-collect indicates that developers
frequently use streams to process data from one collection to the other. For
instance, consider the following example:

private boolean checkRole(User user, Set<Role> expectedRoles) {
Set<String> roleNames = expectedRoles.
stream().map(Role::getRoleName).collect(Collectors.toSet());
return authorityRepository.checkRole(user.getUsername(), roleNames);



0 50 100 150 200 250 300 350 400 450

[stream, filter, findFirst]

[stream, anyMatch]

[stream, collect]

[stream, filter, collect]

[stream, map, collect]

Fig. 2. Most commonly used stream pipelines with sequential processing. The bar width
represents number of project that have at least one instance of the pipeline.

0 5 10 15 20 25 30 35 40

[parallel]

[parallelStream, map, collect]

[parallelStream]

[range, parallel, forEach]

[parallelStream, forEach]

Fig. 3. Most commonly used stream pipelines with parallel processing. The bar width
represents number of project that have at least one instance of the pipeline.

}

The example shows a snippet containing a stream pipeline that creates a
stream from a set of role objects and return it as a set. Therefore, the stream is
used as an intermediate step, and the rest of the execution use a collection as a
main data structure.

Figure 3 also shows that the most commonly used parallel pipelines
involve forEach, map and collect operations. Once again, parallelism is used
in its most simple form, the most frequent pipeline parallelStream-forEach is
used to process elements using a single behavioral function. For instance, consider
the following example:

private void stopAllBrowsers() {
if (allSessions == null) {



return;
}
allSessions.getAllSessions().parallelStream()

.forEach(session −> {
try {

session.stop();
} catch (Exception ignored) {

// Ignored
}

});
}

The example depicts a snippet where developers create a parallel stream from
a set of session objects and stops each of them.

Stream Collectors. The Java Collector class provides a number of expressive
reduction operations. These operations are commonly used together with the
collect operations. The most used Collector operators are toList (9079), toSet
(2000), joining (1326), toMap (981) and groupingBy (319). Although the library
offers an efficient mapping function, developers use a map followed by a collect,
thus representing a missed opportunity for using a dedicated optimization.

Partial Stream pipelines. There are a number of partial pipelines. We consider
partial stream pipelines to a method call chain that do not end with a terminal
operation. For instance, of and stream, these represent program statements where
a stream was instantiated, but none terminal operation was performed on them.
Normally, these streams are used in different methods. We plan to consider
inter-procedural stream operations as future work.

5 Conclusion & Future Work

As far as we are aware of, this paper describes the largest effort in mining
Java stream usage. We initially analyzed 10,000 popular Java projects and
considered 610 projects for a deeper analysis. Results of such a large scale
analysis can be used to complement recent effort in studying Java streams [12].
For example, recent works [10] have proposed a sophisticated refactoring tooling of
the pipelines sort-collect, parallel-map-collect, and unordered-distinct. Our
empirical study shows that these pipelines are extremely rare, thus mitigating
the possible impact of such a refactoring. As future work, we plan to pursue our
effort in considering partial stream pipelines.

Acknowledgments. Bergel thanks ANID Fondecyt 1200067 for partially spon-
soring this work.

References

1. Abelson, H., Sussman, G.J.: Structure and Interpretation of Computer Programs.
MIT Press, Cambridge, MA, USA, 2nd edn. (1996)



2. Basios, M., Li, L., Wu, F., Kanthan, L., Barr, E.T.: Darwinian data structure
selection. In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. p. 118–128. ESEC/FSE 2018, Association for Computing Machinery,
New York, NY, USA (2018)

3. Bergel, A., Infante, A., Maass, S., Sandoval Alcocer, J.P.: Reducing resource
consumption of expandable collections: The pharo case. Science of Computer
Programming 161, 34–56 (2018), advances in Dynamic Languages

4. Blog, I.I.: Intellij idea inspection settings for refactoring to java 8, (Accessed on
01/14/2020)

5. Costa, D., Andrzejak, A.: Collectionswitch: A framework for efficient and dynamic
collection selection. In: Proceedings of the 2018 International Symposium on Code
Generation and Optimization. p. 16–26. CGO 2018, Association for Computing
Machinery, New York, NY, USA (2018)

6. Costa, D., Andrzejak, A., Seboek, J., Lo, D.: Empirical study of usage and perfor-
mance of java collections. In: Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering. p. 389–400. ICPE ’17, Association for
Computing Machinery, New York, NY, USA (2017)

7. Costa, D., Mujahid, S., Abdalkareem, R., Shihab, E.: Breaking type-safety in go:
An empirical study on the usage of the unsafe package. IEEE Transactions on
Software Engineering (01), 1–1 (feb 5555)

8. Crasso, M., Mateos, C., Zunino, A., Misra, S., Polvorin, P.: Assessing cognitive com-
plexity in java-based object-oriented systems: Metrics and tool support. Computing
and Informatics 35 (01 2014)

9. Evans, A.N., Campbell, B., Soffa, M.L.: Is rust used safely by software developers?
In: Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering. p. 246–257. ICSE ’20, Association for Computing Machinery, New
York, NY, USA (2020)

10. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S.: [engineering paper] a
tool for optimizing java 8 stream software via automated refactoring. In: 2018 IEEE
18th International Working Conference on Source Code Analysis and Manipulation
(SCAM). pp. 34–39 (Sep 2018)

11. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ahmed, S.: Safe automated
refactoring for intelligent parallelization of java 8 streams. In: Proceedings of the
41st International Conference on Software Engineering. p. 619–630. IEEE Press
(2019)

12. Khatchadourian, R., Tang, Y., Bagherzadeh, M., Ray, B.: An empirical study on the
use and misuse of java 8 streams. In: Wehrheim, H., Cabot, J. (eds.) Fundamental
Approaches to Software Engineering. pp. 97–118. Springer International Publishing,
Cham (2020)

13. Martins, P., Achar, R., V. Lopes, C.: 50k-c: A dataset of compilable, and com-
piled, java projects. In: 2018 IEEE/ACM 15th International Conference on Mining
Software Repositories (MSR). pp. 1–5 (May 2018)

14. Mastrangelo, L., Hauswirth, M., Nystrom, N.: Casting about in the dark: An
empirical study of cast operations in java programs. Proceedings of the ACM on
Programming Languages 3(OOPSLA) (Oct 2019)

15. Mastrangelo, L., Ponzanelli, L., Mocci, A., Lanza, M., Hauswirth, M., Nystrom, N.:
Use at your own risk: The java unsafe api in the wild. SIGPLAN Notices 50(10),
695–710 (Oct 2015)

16. Mazinanian, D., Ketkar, A., Tsantalis, N., Dig, D.: Understanding the use of lambda
expressions in java. Proc. ACM Program. Lang. 1(OOPSLA) (Oct 2017)



17. Misra, S., Cafer, F., Akman, I., Fernandez-Sanz, L.: Multi-paradigm metric and its
applicability on java projects. Acta Polytechnica Hungarica 10, 203–220 (01 2013)

18. Nagappan, M., Robbes, R., Kamei, Y., Tanter, E., McIntosh, S., Mockus, A.,
Hassan, A.E.: An empirical study of goto in c code from github repositories. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.
p. 404–414. ESEC/FSE 2015, Association for Computing Machinery, New York,
NY, USA (2015)

19. Oliveira, W., Oliveira, R., Castor, F., Fernandes, B., Pinto, G.: Recommending
energy-efficient java collections. In: 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). pp. 160–170 (2019)

20. Sandoval Alcocer, J.P., Bergel, A.: Tracking down performance variation against
source code evolution. In: Proceedings of the 11th Symposium on Dynamic Lan-
guages. p. 129–139. DLS 2015, Association for Computing Machinery, New York,
NY, USA (2015)

21. Sandoval Alcocer, J.P., Bergel, A., Valente, M.T.: Learning from source code
history to identify performance failures. In: Proceedings of the 7th ACM/SPEC
on International Conference on Performance Engineering. p. 37–48. ICPE ’16,
Association for Computing Machinery, New York, NY, USA (2016)

22. Sandoval Alcocer, J.P., Bergel, A., Valente, M.T.: Prioritizing versions for perfor-
mance regression testing: The pharo case. Science of Computer Programming 191,
102415 (2020)

View publication stats

https://www.researchgate.net/publication/353738678

