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Abstract—Continuous Integration (CI) is the process of auto-
matically compiling, building, and testing code changes in the
hope of catching bugs as they are introduced into the code base.
With bug fixing being a core and increasingly costly task in
software development, the community has adopted CI to mitigate
this issue and improve the quality of their software products.
Bug fixing is a core task in software development and becomes
increasingly costly over time. However, little is known about how
effective CI is at detecting simple, single-statement bugs.

In this paper, we analyze the effectiveness of CI in 14 popular
open source Java-based projects to warn about 318 single-
statement bugs (SStuBs). We analyze the build status at the
commits that introduce SStuBs and before the SStuBs were fixed.
We then investigate how often CI indicates the presence of these
bugs, through test failure. Our results show that only 2% of
the commits that introduced SStuBs have builds with failed tests
and 7.5% of builds before the fix reported test failures. Upon
close manual inspection, we found that none of the failed builds
actually captured SStuBs, indicating that CI is not the right
medium to capture the SStuBs we studied. Our results suggest
that developers should not rely on CI to catch SStuBs or increase
their CI pipeline coverage to detect single-statement bugs.

I. INTRODUCTION

Continuous integration (CI) is commonly used in many

industry and open-source projects [1]–[3]. Online CI services,

such as Travis CI, continuously integrate code changes by

automating compilation, building, and testing [3], [4]. With

CI, incremental changes brought to the code base are more

atomic, which makes bug detection simpler and quicker. In

addition, early bug detection and reporting significantly reduce

maintenance overhead since it allows developers to fix faults

and make possible critical decisions earlier in the project’s

lifecycle, which leads to fewer unintended consequences [1],

[5], [6].

Recently, Karampatsis and Sutton distinguished a new type

of software bugs called single-statement bugs (SStuBs) [7].

SStuBs are bugs in which the associated fixing commit

contains only single-statement changes, excluding stylistic

changes and differences in comments. At first glance, SStuBs

tend to be easy to introduce because they can be caused by

simple modifications such as changing a variable name or

arguments in a function. However, SStuBs still find their way

to software projects, even in the presence of a CI pipeline.

While prior work on CI focused on studying its usage and

benefits (e.g,. [1], [8]) and examining the reasons for failing

builds (e.g,. [1], [5]), no prior work answers the question; how
effective is CI in indicating single-statement bugs (SStuBs)?

Therefore, the main goal of our work is to empirically

investigate the effectiveness of CI in identifying and reporting

SStuBs, through failing tests. We begin by examining the

ManySStuBs4J dataset [7] and selecting 14 open-source Java

projects that contain a significant number of single-statement

bugs. We then analyze the selected projects to identify the

commits that introduce SStuBs in these projects. Finally, we

link these commits to their build results on Travis CI [9]

to examine how effective is CI in identifying SStuBs. We

formulate our study in the follow two research questions:

RQ1: How many CI builds fail when the SStuBs are in-
troduced? How many CI builds fail just before SStuBs are
fixed? We find that only 2% of the commits that introduced

SStuBs have builds that report a failure. Similarly, only 7.5%

of commits preceding the SStuBs fix commit show any signs

of build failure. In fact, the majority of SStuBs (50.5%) we

investigate have a long time-span, living in the code for more

than one month.

RQ2: From the CI builds that do fail, how many fail
due to the SStuBs? Of the 23 failed builds that we manually

inspected to determine the failure root cause, none failed due

to tests covering SStuBs. Instead, builds failed for external

reasons, such as dependency errors [10].

Our results show that CI is not effective in capturing SStuBs,

hence, developers should not depend on it for such.

II. CASE STUDY DESIGN

The goal of our study is to investigate the effectiveness

of CI on identifying SStuBs. To that aim, we first identify

the commits that introduce these SStuBs (i.e,. bug-inducing

commits) and the commits that precede the SStuBs’ fix. Then,

we examine the CI build results that were triggered by these

commits. To do so, we triangulated three different data sets.

First, we use the ManySStuBs4J to identify commits that fix

SStuBs [7]. Then, we generate a dataset using the Commit

Guru tool to identify commits that introduce SStuBs [11]. Fi-

nally, we use the TravisTorrent to extract the build results [9].

In the following sections, we discuss the steps used to filter a

set of 14 open source projects from the ManySStuBs4J dataset

and the methodology used to address our research questions.

An overview of our approach is shown in Figure 1.
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Figure 1: Overview of our approach.

Table I: Descriptive statistics of the 14 selected Java projects.

Descriptive Statistics Avg Min Median Max

Project Age (years) 11 8 10 20
KLOC 434 30 380 1,898
# of commits 9,670 1,700 9,863 25,448
# of stars 11,307 5,600 9,600 40,100
Travis CI Usage (years) 6.6 5 7 10
# Bug types 10.6 7 10 15

A. Data Filtering

The ManySStuBs4J dataset [7] is composed of fixes to Java

simple bugs. In this paper, we study the small version of the

dataset that contains 25,539 SStuBs fixes mined from 100

popular open-source Java projects. While 100 projects were

reported by the ManySStuBs4J dataset, we only found 84

projects in the set. Because of time and resource limitations,

we decide to filter projects based on the availability of CI data

and diversity of bug types, which results in a studied system

of 14 Java projects. Next, we describe our filtering steps.

DF 1: Selecting projects with CI data. The goal of our

study is to investigate the effectiveness of CI at indicating

SStuBs. Hence, we must select projects with publicly available

CI data. We select projects that have adopted Travis CI, a

popular CI service provider [12]. For this, we cross-reference

the TravisTorrent [9], a public dataset of TravisCI data, and

the ManySStuBs4J dataset based on the repository names.

The repository name is composed by the owner id and the

project name, and is unique in both datasets. We find that

34 projects from the ManySStuBs4J dataset have available CI

data in TravisTorrent.

DF 2: Filtering projects based on bug type. The

ManySStuBs4J dataset presents 16 distinct bug types.

To cover a wider variety of SStuBs categories, we decide to

select the 15 projects with the highest diversity in bug types.

This resulted in a final set of Java projects containing both

SStuBs data and their CI information for a total of 1,284

bug fix commits. Table I presents the descriptive statistics of

the selected projects, showing that the projects we investigate

are mature (median of 10 years) and popular Java projects.

Some of the selected projects include Junit4, Apache Flink,

and Google Guice.
B. Data Analysis

Our study focuses on analyzing the effectiveness of CI

at indicating the bug, either when it was first introduced

(the earliest chance for CI to capture the SStuB) or right

before the fix (the latest chance for CI to capture the SStuB).

The ManySStuBs4J dataset only contains the commits that

introduced the fixes. Hence, to address our research questions,

we need data about the commits that introduced the bugs fixed

by the commits presented in the ManySStuBs4J dataset. The

analysis steps are described below.

DA 1: Finding the bug-inducing commits associated to the
ManySStuBs4J fix commits. For this, we use the tool Commit

Guru [11] to trace back the bug-inducing commit with the

fix commit hash. Commit Guru is a tool that, among other,

implements the SZZ algorithm to identify commits that are

more likely to introduce bugs into a project. The repository

Google/guava failed to be analyzed by Commit Guru due to

a faulty commit modifying all repository files. This leaves us

with a set of 14 projects for our analysis. Then, we map the

corrective commit to the commit it is fixing which corresponds

to the bug-inducing commit. We find 318 distinct SStuBs

commit and fix commit pairings.

DA 2: Associating buggy commits with CI builds. In

this step, we want to obtain CI data for the builds at bug

introduction. In other words, we need to see if bug-inducing

commits either triggered a build or are part of a push that

triggered a build. For this, we query the TravisTorrent dataset

for the bug-inducing commit hash. We find that 50 bugs are

associated to a Travis CI build.

DA 3: Finding build status and test logs. In this step, we

are interested in obtaining the build status and test logs for the

builds that are associated to the aforementioned bug-inducing

commits. Precisely, we want to obtain the build status and test

logs for (a) builds associated with the bug-inducing commits,

(b) builds preceding the build associated with the fix commits,

and (c) builds associated with the commits that introduced the

fix as illustrated in Figure 2. For phase (a), we proceed as

mentioned in DA 1. For phase (b), we query the TravisTorrent

dataset for the build that corresponds to the previous build

associated to a fix commit hash. We obtain 57 builds that

occurred because the fix is introduced. For phase (c), we query

the TravisTorrent dataset for the fix commit hash and find 366

associated builds. The results found with phase (c) are used

to compare the number of tests that run within the CI builds

after the fix commit with phase (b).

DA 4: Computing the lifespan of the bugs. To determine
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Figure 2: Illustration of our analysis method.

how long a SStuB remains in the code base, we query the

Commit Guru set for the commit hash associated to the bug

introduction and the author date associated to that commit. We

repeat this process for the commit hash associated to the fix.

Finally, we calculate the difference in author dates (between

introduction and fix) to determine how long the SStuB lived

in the code. Using this process, we are able to determine the

lifespan for a total of 318 SStuBs.

III. CASE STUDY RESULTS

In this section, we present the results of our two research

questions. For each research question, we present its motiva-

tion, the approach to answer the question, and the results.

RQ1: How many CI builds fail when the SStuBs are intro-
duced? How many CI builds fail just before SStuBs are fixed?

Motivation: Prior research shows that CI is effective at

catching bugs (e.g,. [1], [2]). While easy to fix, SStuBs can

linger in the code for quite some time if not captured by

automated tests. In this research question, we want to evaluate

the CI effectiveness at catching SSTuBs to help developers fix

them as soon as possible.

Approach: CI can help identify bugs when they are first

introduced (ideal case), or later in the development, once new

tests are added to the CI test suite. We illustrate this timeline

in Figure 2. We approach this problem by analysing the related

build status in two points: at the time when the bug was

introduced in the code (stage A in the figure) and right before

the bug was fixed by developers, by analyzing the build status

related to the commit that preceded the fix-commit (stage B).

The rationale is that, the bug introducing commit is the earliest

that CI can indicate the presence of SStuBs and the commit

that precedes the fix is the last chance for CI to indicate the

presence of SStuBs. Then, we report how many commits have

triggered the CI to fail, in stages A and B, by computing the

proportion of builds that have finished with the status “passed”,

“failed”, and “errored”.

While we are interested in evaluating CI effectiveness at

capturing SStuBs, CI builds occur at the commit level. A

single commit can introduce and/or fix multiple SStuBs, and

we find that the 318 SStuBs were introduced and fixed by

240 distinct commit pairs. For instance, we find that the 65

commits introduced 2 different SStuBs in our dataset. That

means that all our analysis of CI is based on these 240 distinct

commits, as a CI build runs at the commit level.

Results: Of the 240 SStuB related builds, only 2.0% (5) fail
when the SStuB is introduced. Table II shows the results of

our analysis. In the column “Bug-inducing commits (A)”, we

show the CI build statuses. From the 64 bug-inducing commits

Table II: Coverage of CI on 318 single-statement bugs that

were introduced and fixed on 240 distinct commits.

Bug-inducing Pre Bug-fixing
commits (A) commit (B)

# CI builds 64 (26.6%) 159 (66.2%)

# CI passed builds 41 (17.0%) 127 (52.9%)
# CI failed builds 5 (2.0%) 18 (7.5%)
# CI builds with errors 18 (5.6%) 14 (5.8%)

Figure 3: Distribution of the lifespan of 318 SSTuBs in our

dataset.

that have their code tested by the projects’ test suite, we find

that 41 pass all their tests and only 5 (2%) of them have some

failed tests. In this result, we also notice that 18 builds yield

an error, which can be caused by a myriad of reasons, such as

project build errors, server timeout, failure in the environment,

etc.

Moreover, we notice that of the 240 bug-inducing commits,

only 64 (26.6%) have a CI build data associated with them.

This indicates that the vast majority of 176 bug-inducing

commits are not tested the projects’ CI pipeline.

Of the 240 SStuB related builds, only 7.5% (18) fail just
before the fixing commit. “Column Pre Bug-fixing commits

(B)” in Table II shows the results of the CI build status just

before the fix. From the Table, we notice that the proportion

of commits that have triggered a build substantially increases

to 159 (66.2%). From these 159 builds, we find that its vast

majority (127) pass all their tests. Only 18 builds show failed

tests, and 14 builds yield errors.

Overall, only a minute fraction of SStuBs have an associated

CI build with failed tests. While the proportion at the time

of the fix (stage B) is higher than when introducing the bug

(stage A), our results indicate that SStuBs can live in the code

base without affecting the build status of the CI pipeline. To

investigate how long each SStuBs have lived in the project’s

code, we compute the lifespan of each bug. Figure 3 presents

the distribution of the SStuBs lifespan binned by six categories

of periods. Note that the majority of SStuBs (50.32%) have a

lifespan longer than one month.

Implications: Surprisingly, the majority of the builds do not

fail when SStuBs were introduced to the code base, neither at

the builds preceding the fix commit. In fact, most of the studied

SStuBs stayed hidden in the code for more than a month, with

22% of them staying in the code for at least 6 months. This

indicates some level of inadequacy of CI pipelines in finding
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Table III: Why does CI build fail on 23 builds.

Bug-inducing Pre Bug-fixing
commits (A) commit (B)

Total of CI fails 5 18

Failed tests related to SStuBs 0 0
Failed tests unrelated to SStuBs 1 8
Build failed without running tests 3 5
Build failed with all passing tests 1 5

this type of bug. One reason for the the surprisingly long

lifespan of these 318 SStuBs is that these bugs may introduce

failures in non-essential parts of the software project. Another

explanation, is that such bugs were not initially bugs when

the code was first modified (in the so-called bug-inducing

commits), but they later became bugs in the system due to

some other concurrent code change.

The majority of bug-inducing commits (74%) did not

trigger any CI build, and only 5 out of 64 builds failed

the test when SStuBs were introduced in the code. Builds

that precede the bug fix are more frequent (66%), but only

18 out of 159 builds showed any failed tests. The majority

of SStuBs stay in the code for more than a month.

RQ2: From the CI builds that do fail, how many fail due to
the SStuBs?

Motivation: The observations made in RQ1 suggest that CI is

not very effective in detecting SStuBs early on. In this research

question, we are interested in finding how many of CI builds

actually captured the SStuBs.

Approach: In this question, we focus on manually analysing

the builds that have reported failed tests in RQ1. We analyze

the 5 builds that have failed in phase A and the 18 builds

that have failed in phase B, as illustrated in Figure 2. We

manually inspect the test results and test logs provided by

Travis-CI data. Once we identify the failed tests, we resort

to code analysis to investigate if the tests failures are linked

to the part of the code SStuBs is located. For failed builds,

we manually inspect the build logs and test log to verify their

relationship. It is important to note that for this step, we do

not apply formal analysis since identifying whether the build

is related to the test is straightforward.

Results: None of the CI builds that fail, do so because
of SStuBs. Table III shows the results of RQ2 in the column

“Pre bug-fixing commit (B)”. We observe that of 23 builds that

failed in our previous analysis, none were associated with the

SStuBs in the code. From the 5 builds that fail during bug-

inducing commits (A), 1 build fails due to tests completely

unrelated to the SStuBs, 3 other builds fail without even

running tests and 1 build fails due to external reasons. For

example, upon manual analysis of the test logs and source

code, we find a failing test associated to the following message

“Failure Encountered too many errors talking to a worker

node”, which is unrelated to the related SStuB.

From the 18 builds that fail right before the bug-fix commit

(B), we find that 8 builds have failed tests. However, none of

the failed tests execute the code where the SStuBs are located.

Furthermore, 5 builds fail without running any tests, due to

external reasons such as dependency errors1 and 5 other builds

fail even with all passing tests also because of dependency

errors2.

Implications: Our results indicate that CI are not effective in

finding any of the 318 SStuBs we investigated. We find that,

while 9 of the 23 builds failed due to failing tests, the tests did

not cover the SStuBs code location. Moreover, the majority of

the failures were not caused by test suite but external failures

such as dependency errors. Hence, our observations suggest

that it is more common for builds to fail because of external

failures than SStuBs.

From the 23 failed builds, none are caused by a test affected

by SStuBs. Most of the failed builds (14 out of 23) are

caused by external failures, such as dependency errors, and

did not even execute the test suite.

IV. THREATS TO VALIDITY

There are few important limitations to our work that need to

be considered when interpreting our findings. First, to identify

the commits that introduce the SStuBs, we use the Commit

Guru tool which is based on the SZZ algorithm [11]. Hence,

we are limited by the accuracy of Commit Guru. In some

cases, we may have missed instances of commits. To help

alleviate this issue, we manually investigated some of the

identified commits, and in all cases, we found that Commit

Guru has identified the correct commits. Second, our study

focuses on only 14 open source Java based projects on a

subset of SStuBs and are unlikely to generalize beyond this set

of projects. Finally, our study uses the TravisTorrent dataset,

thus, our results are limited to the correctness and quality of

the available Travis CI build data.

V. CONCLUSIONS

In this paper, we analyze the effectiveness of CI on 14

popular open source Java-based projects to warn about single-

statement bugs. To do so, we analyze the status of CI builds in

two stages: when the SStuBs was introduced in the code and

before the SStuBs were fixed. We then investigate how often

CI indicates the presence of 318 SStuBs, through test failure.

Our findings show that CI was ineffective at indicating the

presence of SStuBs, with no build failure caused by SStuBs.

In fact, the majority of the studied SStuBs stay in the code

for more than a month, which further corroborates with our

assessment on the CI inadequacy in capturing SStuBs. These

results should, however, be considered preliminary. Future

work should focus on enlarging our dataset and examining

other programming languages and CI services. Another direc-

tion could be to collect qualitative data from projects to assess

the quality of the CI pipelines. Interesting future work is to

build tools that determine the effectiveness of the CI pipeline.

1https://travis-ci.org/github/graylog2/graylog2-server/builds/31332558
2https://travis-ci.org/github/prestodb/presto/builds/36184662
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