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ABSTRACT
Networks play an increasingly important role in modelling real-
world systems due to their utility in representing complex connec-
tions. For predictive analyses, the engineering of node features in
such networks is of fundamental importance to machine learning
applications, where the lack of external information often intro-
duces the need for features that are based purely on network topol-
ogy. Existing feature extraction approaches have so far focused
primarily on networks with just one type of node and thereby disre-
garded the information contained in the topology of heterogeneous
networks, or used domain specific approaches that incorporate
node labels based on external knowledge. Here, we generalize the
notion of heterogeneity and present an approach for the efficient
extraction and representation of heterogeneous subgraph features.
We evaluate their performance for rank- and label-prediction tasks
and explore the implications of feature importance for prominent
subgraphs. Our experiments reveal that heterogeneous subgraph
features reach the predictive power of manually engineered fea-
tures that incorporate domain knowledge. Furthermore, we find
that heterogeneous subgraph features outperform state-of-the-art
neural node embeddings in both tasks and across all data sets.
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1 INTRODUCTION
The observation that everything is connected to everything else,
which is frequently (mis-) attributed to Renaissance researcher
Leonardo da Vinci, describes the recent advances in Information
Retrieval and data modelling increasingly well. Networks of enti-
ties offer an intuitive representation of complex connected systems
by abstracting them as graphs. Despite this apparent simplicity,
even the most basic network structures pose rich analytical chal-
lenges. However, completely abstracting real networks as a single
type of connected nodes is often an oversimplification of the rep-
resented system. As a result, heterogeneous (information) networks
have shifted into the focus of research, which are composed of
different types of nodes or edges. Examples include a variety of
data from naturally observed biological networks to constructed
entity networks and knowledge bases. Recently, such networks
have been applied in tasks as diverse as music and movie recom-
mendation [8, 36], multiplex film citation analysis [26], the identifi-
cation of a molecular basis for human disease [31], the embedding
of language networks [29], or the extraction of events from im-
plicit textual networks of named entities [25]. The terminology in
the literature is ambiguous since heterogeneous may refer to net-
works that are node-heterogeneous (also called multi-mode), or
edge-heterogeneous (also called multiplex or multi-layer). In the
following, we focus on node-heterogeneous networks.

Data Mining in heterogeneous information networks leverages
the inherently diverse representation to derive insights into the
underlying systems [27]. Frequently, node types are used explicitly,
e.g., to recommendmovies based on user and actor connections [36].
Similar examples include Wikipedia query intent analyses [22], so-
cial network analysis [11], and transductive classification [3]. Most
prominently, the availability of large scientific publication networks
such as DBLP has motivated investigations into the extraction of
information from heterogeneous citation networks, for which the
distinction between node types has proven to be successful [30].

To support such predictive analyses, it is paramount to extract
representative node features from the network, which can be di-
vided into (1) intrinsic features that require domain knowledge in
the engineering phase and (2) graph features that are based on the
topological network structure. Since feature engineering is costly
and domain knowledge can be difficult to obtain, some emphasis
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has been put on extracting node features or embeddings that char-
acterize node connectivity information [7, 9, 20]. Frequently, these
approaches rely on random walks, which can be problematic due to
the heavily skewed degree distribution of real-world networks [29].
Despite the growing prevalence of heterogeneous networks, many
approaches do not include node labels in the model. While they
leverage the topological neighbourhood of nodes and some even
include (partial) node labels, so far no approach has abstracted the
extraction of labelled features to a purely topological level with
no domain knowledge. Furthermore, since node embeddings in-
clude a dimension reduction, the resulting features are abstract
representations that offer no insights into the structure of the data.

Here, we propose heterogeneous subgraph features that include
both topological information and node labels. They are designed for
settings in which domain-specific features cannot be engineered
for heterogeneous networks. Unlike neural embeddings, they offer
insights into the network structure in diverse settings. We discuss
an implementation of the underlying subgraph census algorithm
that avoids the problems caused by the skewed degree distribu-
tions common to most networks, since the utilized counts of local
subgraphs reflect both abundance and sparsity of connectivity.

Contributions. (i)We introduce subgraph features for heteroge-
neous networks, which cope well with the skewed topology of real-
world networks and can replace features that are engineered with
domain knowledge when such knowledge is unavailable. (ii)We
discuss the interpretability of this new feature in contrast to neural
embeddings. (iii) We provide an efficient implementation of the
feature extraction and encoding framework1. (iv) We demonstrate
the effectiveness of the new features against classic features and
neural embeddings for several machine learning techniques in two
predictive tasks on three structurally diverse networks.

2 RELATEDWORK
Our approach touches on concepts in the fields of Data Mining and
Network Analysis as we discuss in the following.

Prediction in Information Networks. Information extraction
from information networks encompasses a variety of methods, so
we focus on the most closely related ones (for an overview, see [27]).

Guo and Liu consider feature generation for music recommen-
dation in heterogeneous graphs based on random walks [8]. In a
similar approach for personalized entity recommendation, Yu et
al. represent the connectivity between users and items by extract-
ing path-based latent features [36]. Bangcharoensap et al. propose
the transductive prediction of node labels based on edge between-
ness [3]. The latent space heterogeneous model by Jacob et al. also
addresses transductive classification in social networks by trans-
forming the heterogeneous classification problem into multiple
homogeneous problems [11]. Ren et al. use graphs of user queries,
web pages and Wikipedia concepts for learning user intent [22].
For scientific publication networks, Dong et al. predict the impact
of papers based on a network containing authorship, venue, and
citations [4]. Ren et al. derive citation recommendations from clus-
tering heterogeneous networks of scientific publications [21]. In
an extension of link prediction on homogeneous networks, Sun
et al. predict author collaboration in DBLP data by including a

1C++ and Python code are available at https://dbs.ifi.uni-heidelberg.de/resources/hsgf/

temporal aspect [28]. Huang et al. propose meta-structures as a
generalization of meta-paths for relevance computations based on
user-specified meta-structures as input seeds [10].

While the above works utilize the heterogeneity of the networks,
they also require domain specific knowledge. An approach that
does not use domain knowledge is given by Fang et al., who pre-
dict the semantic proximity of nodes through the extraction of
meta-graphs [5]. However, they rely on bipartite symmetries in the
network for proximity prediction, which do not work as universal
features. In contrast to all above approaches, we focus on extracting
subgraph features from general heterogeneous networks that do
not require intrinsic symmetries or domain knowledge.

Node Feature Extraction. To identify the role of graph nodes,
Henderson et al. rely on structural equivalence, which postulates
that nodes with similar neighbourhoods have similar roles [9]. Per-
ozzi et al. learn latent representations for nodes in a social network
by applying an approach that is reminiscent of word embeddings in
low-dimensional vector spaces to random walks around nodes [20].
Similarly, Grover and Leskovec [7] learn node embeddings by com-
bining different schemes for localized neighbourhood exploration.

The above approaches do not reflect the heterogeneity of node
neighbourhoods. Furthermore, methods that are based on random
walks suffer from the sparseness of neighbourhoods around low-
degree nodes, which is problematic due to the skewed degree distri-
bution of real-world networks. In contrast, we introduce a subgraph-
based method that includes local sparseness in the feature.

Subgraph Mining and Encodings. The research on subgraph
mining is too extensive to cover here, so we refer to the survey by
Jiang et al. for an in-depth overview [13]. An early contribution
to subgraph encodings was given by Yan and Han with DFS-codes
as canonical representations [34] that were originally designed
for graph indexing [35]. More recently, Mason et al. introduced a
scheme for encoding node neighbourhoods in cellular networks
by enumerating labellings of local neighbourhoods, which they
apply to a topological comparison of cellular networks [15]. Due to
its geometrically motivated construction, the scheme is limited to
spatially embedded networks. In contrast, we introduce an encoding
scheme for the representation of heterogeneous subgraphs that
includes node labels of arbitrary graphs in a characteristic sequence.

NetworkMotifs. Conceptually similar to subgraph mining, net-
work motifs were introduced by Milo et al. [18], and represent
subgraphs that occur significantly more frequently in an observed
network than in a comparable network model. As such, motifs rely
on a network model for determining significance. The wrong choice
of model may entail biased results, which has led to criticism [1]
and makes motifs difficult to use in practice. Wernicke provides
an efficient algorithm for extracting all motifs of a given size [32]
that is implemented in the tool FANMOD [33]. Ribeiro and Silva
introduce an algorithm for the extraction of colored network motifs
that employs gTries for subgraph enumeration [23].

In practice, the mining of motifs is inherently different from
the extraction of subgraph features. Motif discovery requires the
enumeration of all global subgraph counts of a network and is
prohibitively expensive for all but the smallest subgraphs and net-
works. In contrast, feature extraction requires a local enumeration
of rooted subgraphs around the target node. As a result, motif
extraction algorithms are ill-suited to subgraph feature extraction.

https://dbs.ifi.uni-heidelberg.de/resources/hsgf/
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3 FEATURE MODEL
Let G = (V ,E) denote an undirected graph over the set of nodes
V that are connected by edges E. We write vw ∈ E if nodes v and
w are connected by an edge. To represent the distinct labels (i.e.,
types or classes) of nodes in a heterogeneous network, we use a
set of node labels L and a function λ : V → L such that λ(v ) ∈
L ∀v ∈ V . A heterogeneous network is then a labelled graph G =
(V ,E,L), but we omit Lwhere it is clear from context. To distinguish
between networks with different levels of connectivity between
nodes that have different labels, we introduce the label connectivity
graph, in which all nodes with the same label are aggregated into a
single node. In Figure 1A we show an example of a heterogeneous
publication network and its corresponding label connectivity graph.

We callG ′ = (V ′,E ′) a subgraph ofG andwriteG ′ ⊆ G ifV ′ ⊆ V ,
E ′ ⊆ E and v,w ∈ V ′ for all vw ∈ E ′, i.e., if G ′ is contained in G.
The set of rooted subgraphs for a root node v ∈ V is defined as
S (v ) = {G ′ ⊆ G |v ∈ V ′}, i.e., the set of all subgraphs of G that
contain v . To represent the local neighbourhood around a node v
in G, we can thus extract a census of distinct subgraphs containing
v (i.e., we count all subgraphs), as we discuss in the following.

Graph Isomorphism. During the exploration of the neighbour-
hood of a root node, the nodes of structurally identical subgraphs
may be visited in different order. Therefore, the correctness of the
subgraph census depends on a matching of identical subgraphs,
independent of the visitation order. Formally, assume that we are
given two labelled graphs G = (V ,E,L) and G ′ = (V ′,E ′,L). We
say that G is isomorphic to G ′ (and write G ≃ G ′) if there exists
a bijection ϕ : VG → VG′ with the two properties: (i) uv ∈ E iff
ϕ (u)ϕ (v ) ∈ E ′ ∀u,v ∈ V . (ii) λ(v ) = λ(ϕ (v )) ∀v ∈ V . Thus, two
isomorphic graphs cannot be distinguished unless node ordering
is taken into account. The desired feature of a subgraph encoding
scheme is thus the ability to distinguish subgraphs up to isomor-
phism. Unfortunately, it is unknown whether a polynomial solution
to the problem exists [2]. However, subgraph features represent
the local neighbourhood of nodes and do not need to be arbitrar-
ily large. Therefore, the subgraphs can be limited to a size where
the isomorphism problem is manageable with the correct encoding
scheme. Furthermore, we find that a low level of encoding collisions
does not decrease the quality of the subsequent predictions, and
use these observations to introduce an encoding scheme.

3.1 Subgraph Encoding
The most time-consuming aspect of the subgraph census is the
isomorphism test that is performed for every discovered subgraph.
While this problem has no known polynomial solution, a suitable
encoding can be used to solve it for small subgraphs and approxi-
mate it for larger subgraphs. Furthermore, an efficient comparison
to previously discovered subgraphs is necessary to avoid a quadratic
complexity of the comparisons alone. Thus, we design a pseudo-
canonical subgraph encoding such that two small subgraphs are
isomorphic iff their encodings are identical. Instead of checking
two small subgraphs for isomorphism, it is then sufficient to com-
pare their encodings. Here, a hashable encoding enables the use
of hashmaps and reduces the complexity for the extraction of a
single subgraph occurrence to O (1) for fixed maximum subgraph
size. Our encoding is based on labelled subgraph degree sequences.

Figure 1: A: Scientific publication network of institutions
I , authors A and publications P , with corresponding label
connectivity graph. B: Characteristic sequence of a 3-node
graph example. C: Two non-isomorphic graphswith a single
label sharing the same encoding (left). Two non-isomorphic
graphs with three labels and colliding encoding (right).

Characteristic Sequence. Given a graph H = (VH ,EH ) ⊆ G,
for each vertex v ∈ VH we define a sequence sv = t0, t1, . . . , tk of
k = |L| integers, where t0 = λ(v ). For some fixed ordering of labels
l = 1, . . . , |L|, each tl is the number of neighbours of v with label l .

tl := |{u ∈ VH | uv ∈ EH , λ(u) = l }| (1)

Based on the sequences sv for individual nodes, we define the
characteristic sequence sH of H as their concatenation. Thus, let

sH := (sv1 , sv2 , . . . , svn ) (2)

where n is the number of nodes in the subgraph. The sequences svi
are sorted in lexicographic order such that sv1 ≥ sv2 ≥ · · · ≥ svn .

Example. Consider the set of labels L = {x ,y, z}. The sequence
z010z010y002 then encodes a graph with three nodes and two
edges. The first node has label z and no neighbours with label x ,
one neighbour with label y, and no neighbours with label z. The
second node has identical label and neighbourhood to the first node,
while the third node has label y and two neighbours with label z.
Overall, the encoding represents a graph that is a path of length
three with labels z and y (see Figure 1B). Note that the encoding
does not reveal which of the three nodes is the starting node.

Limitations. The above encoding is not unique for graphs of
arbitrary size, since some encodings collide for larger subgraphs
(see Figure 1C). An analytic derivation of the number of subgraph
multiplicities requires the number of graphs with a given degree
sequence, which is unknown [16]. Using an enumeration of non-
isomorphic labelled graphs, we find that the maximum number of
edges that a subgraph may contain to ensure unique encodings
is emax = 5 for graphs without loops in the label connectivity
graph and emax = 4 for graphs with loops in the label connectivity
graph. In practice, we find that the collisions have no negative
impact on the quality of the features since the overall number of
collisions is negligible when compared to the number of possible
subgraphs. Furthermore, higher values of emax correspond to a
higher discriminative power of the features, but also increase the
extraction time, which grows roughly exponentially with the size
of the subgraph. Thus, emax should be selected as high as possible
without impeding the extraction process. In practice, we find that
emax = 5 is a reasonable value for experiments on real-world data.
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3.2 Feature Extraction
Based on the above encoding, we now define heterogeneous sub-
graph features and discuss their extraction for a given node v . We
limit their size by the number of contained edges emax .

Feature Definition. LetH denote the set of all connected sub-
graphs of G that contain v and have at most emax edges. Let
RH ⊆ H denote a representative sub-system ofH with respect to
≃, i.e., every H ∈ H is isomorphic to exactly one element in RH .
The subgraph census then is a function sc : V × RH → N with

sc (v,H ) 7→ |{H ′ ∈ H | v ∈ VH ′ ∧ H ′ ≃ H }| (3)

Thus, for each subgraph type, we compute the number of times it
can be found in the neighbourhood of the start node v . Using the
encoding to replace the isomorphism check, we obtain

c (v,H ) 7→ |{H ′ ∈ H | v ∈ VH ′ ∧ sH ′ = sH }| (4)

The counts c (v,H ) of the encodings of all possible subgraphs H
rooted at v then serve as representative features for node v .

Implementation. To design the subgraph extraction algorithm,
we first observe that this enumerative task is always computation-
ally expensive [6], which encourages the use of efficient enumera-
tion strategies. Thus, we base our algorithm on four key concepts:
(i) subgraphs around a given root node are expanded and enumer-
ated incrementally, (ii) subgraph encodings allow efficient incre-
mental updates, (iii) hashed encodings replace isomorphism tests
with constant-time operations, and (iv) a node-based enumeration
supports by-node parallelization and sampling strategies.

Based on these considerations, we find that a depth-first search
approach around the root node performs well if it is adjusted to the
enumeration task and network topology. Each time a new node is
discovered, it is added to the subgraph and the count of its encoding
is updated in a hashmap. Hashing the above encoding is trivial since
it can be represented as a string. Due to the lexicographic ordering,
it is also possible to efficiently update the encoding by adding nodes
during the expansion of subgraphs. More involved hashing schemes
such as rolling hashes [14] are feasible and allow adding a new node
to a previously discovered subgraph without recomputing the hash
value of the entire encoding. Once the maximum number of edges
per subgraph is reached, backtracking allows the exploration of
further subgraphs around the root node. Since the basic approach
is straightforward, we omit the algorithm and focus on heuristic
optimizations for heterogeneous networks with skewed topology.

Heterogeneous Optimization Heuristic. Due to the hetero-
geneous structure of the graph, the addition of new nodes to the

Figure 2: Label connectivity graphs of the evaluation net-
works. MAG for rank prediction (left) and label prediction
(right) with authorsA, institutions I , conferencesC, journals
J , fields F , and papers P . LOAD with locations L, organiza-
tions O , actors A, and dates D. IMDB with movies M , actors
A, directors D, writersW , composers C, and keywords K .

same adjacent node in an existing subgraph yields identical encod-
ings for each new node with identical label. Thus, we can group
neighbouring nodes according to their label and increase the corre-
sponding subgraph counter by the number of adjacent nodes per
label, instead of using individual increments. It is therefore suffi-
cient to compute the modified hash value once per label. For graphs
with a relatively low number of labels, this decreases the effort from
deдree (v ) to min{deдree (v ), |L|} hash computations per node. The
re-discovery of already known adjacent nodes then has to be han-
dled as a border case, but the entire approach can be implemented
efficiently by sorting the adjacency lists of nodes by label.

Topological Optimization Heuristic. A skewed degree distri-
bution is common to most networks, which include some nodes
with extraordinarily large degrees called hubs. Such hubs play a cen-
tral role in the computational cost of subgraph enumerations since
they (i) inflate subgraph counts of adjacent nodes and (ii) connect
remote regions of the network that share little relation. It is question-
able whether subgraphs that are induced by passing through such
hubs are actually meaningful for neighbouring nodes with a small
degree. Thus, we suggest a maximum degree constraint parameter
dmax that is used in the exploration phase. If a nodew is discovered
in the neighbourhood of a node v such that deдree (w ) > dmax ,
then we addw to the subgraphs of v but do not explore beyondw .
Note that we still include the label information of the hub itself.
This approach considerably reduces the amount of required sub-
graph explorations. In Section 4.3.4, we analyze the impact of this
heuristic on the predictive performance of the features.

4 EVALUATION
We compare the performance of heterogeneous subgraph features
to classic features that we engineered with domain knowledge, and
to state-of-the-art neural embeddings. As evaluation tasks, we con-
sider the prediction of institution success in scientific publication
networks and the prediction of node labels in labelled networks.

4.1 Evaluation Data Sets
To evaluate the performance of the subgraph features, we use three
structurally diverse networks. As shown in Figure 2, the network
types range from strongly interconnected relationships between
labels to the star-like structures of knowledge bases.

Scientific Publication Network. For our experiments, we use
the Microsoft Academic Graph (MAG) [24], which contains sci-
entific publication records, citation relationships between those
publications, as well as authors, institutions, journals, conferences,
and fields of study. For the rank prediction task, we use a subset of
institutions, authors, and papers centered on the respective insti-
tutions as specified in Section 4.2. For the label prediction task we
extract all papers from the conferences KDD and ICML from 2011
to 2015, then add all referenced papers, their conferences, journals,
authors, institutions and fields of research. The resulting network
has 73, 176 nodes, six labels, and 372, 737 edges.

Entity Co-occurrence Network. The LOAD network is an en-
tity co-occurrence network that is constructed from disambiguated
named entity mentions in the text of Wikipedia, namely loca-
tions, organizations, actors, and dates [25], and represents word
co-occurrence networks. We use a version of this network that is
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constructed fromWikipedia articles about the American Civil War2.
We extract the four types of entities to obtain a very dense network
with four labels, 55, 319 nodes, and 1, 130, 372 edges.

Movie Network. We use movie data from the Internet Movie
Database (IMDB). Although it is proprietary, the data is available
for research3 and frequently used as an example of heterogeneous
networks or in recommendation tasks. To select a subset of the
data, we consider classic movies from the Golden Age of Holly-
wood (releases between 1930-1940). For each movie, we add the
actors, directors, writers, and composers that were involved in the
production, as well as keywords to the set of nodes, and connect
them to the movie itself. The network has six labels, 48, 555 nodes,
and 213, 562 edges. It is an example of relational data and has a
star-like structure that is more sparse than the LOAD network.

4.2 Rank Prediction Evaluation
To compare the performance of classic, subgraph and embedded
features on a task with rigorous ground truth data, we predict
the relevance of research institutions for conference contributions
based on the criteria defined in the 2016 KDD Cup. We consider
741 research institutions with publications at the conferences KDD,
ICML, FSE, MM and MobiCom. The 2016 KDD Cup4 provides la-
belled data for these conferences for the years 2011-2015, which
we extend back to 2007 with crawled data from the ACM Digital
Library. We use the years 2007-2014 for training and predict the
relevance of institutions for the year 2015. The relevance relI of an
institution I is defined based on three directives: (i) Each accepted
full paper at a conference has an equal vote. (ii) Each author has
an equal contribution to a paper. (iii) For authors with multiple
affiliations, each affiliation contributes equally. The relevance of an
institution is the sum of individual author contributions.

4.2.1 Evaluation Metric. In accordance with the original task,
we use the normalized discounted cumulative gain for the top-20
rankings to evaluate the predicted relevance ranking. The NDCG
at top-n was proposed by Järvelin et al. [12] and is defined as:

NDCGn :=


n∑
i=1

reli
log2 (i + 1)





n∑
j=1

relj

log2 (j + 1)



−1

(5)

where i is the predicted ranking position of an institution while j
is the real ranking according to the ground truth. NDCG scores lie
in the interval [0, 1], with 1 corresponding to a perfect prediction.

4.2.2 Feature Extraction. We distinguish between three feature
types. Classic features are engineered to encode factors influencing
publication success and include linguistic features reflecting article
contents. Subgraph features are the novel feature type discussed
in Section 3. Embedded features include the three state-of-the-art
neural embedding techniques LINE, node2vec, and DeepWalk.

Classic Features. These include the relevance score of each
institution in previous years, both (i) as an absolute number and
(ii) normalized by the number of accepted papers for this conference
and year. We also include (iii) the amount of full-papers published
by each institution, and (iv) the amount of all papers, including
2https://dbs.ifi.uni-heidelberg.de/resources/load/
3http://imdb.com/interfaces/
4https://kddcup2016.azurewebsites.net/

workshop and demo papers. Using authorship data, we calculate
each author’s average paper count per year and conference and
generate (v) the authorship feature by grouping authors by institu-
tion and summing their scores. While it is possible for authors to be
affiliated with multiple institutions over the years, such cases are
exceedingly rare in the data. We furthermore consider the number
of authors that each institution had at a conference in the past, split
into (vi) authors of full papers and (vii) authors of short papers.
Based on the intuition that the last-author position on a paper often
indicates a senior research group member and the name is thus
more likely to appear on subsequent papers, we include (viii) the
number of last author occurrences as a final feature.

Classic Linguistic Features. We augment the set of classic fea-
tures with linguistically motivated features. For each paper, we
extract the number of different institutions, the number of key-
words, the length in characters of the title, and the number of
stemmed words per title (excluding stopwords). Additionally, we
use frequency distributions of words and parts-of-speech in the
titles and calculate the fractions of word parts-of-speech in the title.
We aggregate these features by institution per conference and year.
For each conference, we create a list of the overall top-20 title words
from accepted papers and use it to derive the average number of
occurrences of these words for each institution. In total, we extract
32 linguistic features for each institution: 4 simple features (average
number of institutions, keywords, words in title, and characters in
title), 8 features for the word classes (noun, verb, adjective, adverb,
numbers, and punctuation), distribution and fraction of words, and
20 features for the usage of the top-20 title words.

Subgraph Features. To predict institution relevance, we focus
on the neighbourhood of institutions in the graph and use induced
subsets of the MAG that contain institutions, authors, and papers
for each target conference and year, as well as all referenced papers
with a distance of at most 2 to papers published at the selected
conferences. For an overview, see the label connectivity graph in
Figure 2 (left). While the MAG contains directed and undirected
edges, we found no improvement in performance when using di-
rected edges and report the results only for the undirected case.

We run the subgraph feature extraction algorithm for each insti-
tution to extract the frequencies of all subgraphs that contain the
institution and have at most emax = 6 edges. We use dmax = ∞,
i.e., we do not apply the degree heuristic to this task.

Combined Features. To evaluate how well the classic and sub-
graph features complement each other and to assess if subgraph
features can enhance features derived with domain knowledge, we
also consider the combination of classic and subgraph features.

Embedded Features. We use LINE, DeepWalk, and node2vec as
state-of-the-art features. All three rely on a neural network embed-
ding of the node neighbourhoods that was originally conceived in
natural language processing to learn word representations based on
their context [17]. LINE optimizes the embedding towards retaining
both the local and global network structure by integrating them
in a unified objective function, and extracts the first- and second-
order proximity of nodes [29]. DeepWalk is designed to learn latent
representations of nodes in social networks and uses local infor-
mation obtained from truncated random walks around a node as
input sequence [20]. In contrast to this strictly random walk based
approach, node2vec combines different exploration strategies for
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the extraction of local node neighbourhood information [7]. The
method uses second-order random walks, which allow a tuning
of the exploration towards a more localized or a more in-depth
approach and benefits from both breadth-first as well as depth-
first search information, at the cost of adding two parameters that
require tuning. For all three embedding approaches, we use the
recommended default parameters. That is, where applicable, we use
an embedding dimension d = 128, walks per node r = 10, random
walk length l = 80, context size k = 10, return parameter p = 1,
in-out parameter q = 1, and number of negative samplings K = 5.

4.2.3 Experimental Setup. We select a set of standard machine
learning regressors: linear regression, decision trees, random forests
and Bayesian ridge (SVM and stochastic gradient descent performed
poorly across all features and are omitted). We use the default con-
figuration for each method provided by the Scikit-learn library [19].
For random forests, we increase the number of trees to 300 to obtain
meaningful results for the feature importance analysis. Random
forests and Bayesian ridge are robust enough to be trained on the
entire set of features. For Bayesian ridge, we find that it yields better
results when we select the 60 best features in a univariate analysis.
Linear regression and decision trees are less suited for large sets
of noisy features and performed poorly in our initial tests, so we
select the 5 best features by a univariate test using a quick linear
model for these two methods.

4.2.4 Ranking Task Evaluation Results. We provide the results
of our experiments in Figure 3. We find that classic and subgraph
features perform well overall, while embedded features perform
consistently worse. As the only exception, LINE has a reasonable
performance as a feature for random forests, where it performs best
in one single instance (FSE). Assessing the stability by regression
method, Bayesian ridge and random forest are the most stable
for all features. For these methods, subgraph features consistently
perform better than classic features, while the combination of both
yields stable results. Predictions made with Bayesian ridge are
always superior when they include subgraph features, and random
forests with subgraphs always produce better or comparable results
to classic features. Linear regression and decision trees fluctuate
strongly by conference. While no feature is clearly preferable for
these two methods, classic features perform better in this case.

In Table 1, we show the average NDCG score over all confer-
ences. The highest score is achieved by random forests, for which
we observe a tie between subgraphs as stand-alone features and
in combination with classic features, while classic features are a
close second. With the exception of decision trees, the combination
of classic and subgraph features produces the most stable results.
While this is not an indication that subgraph features are better
than classic features, their performance is comparable. The low
performance of neural embedding features for this task is not sur-
prising, given that they only use structural information from the
network. On the other hand, it is noteworthy that the subgraph fa-
tures, which are predominantly structural features as well, perform
so much better just by including the label information. As a result,
we find that subgraph features can serve as out-of-the-box features
on novel data or in instances that do not allow for the extraction of
classic features when domain knowledge is not available. Given the
immense manual effort that is required to engineer classic features,
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Figure 3: Comparison of NDCG scores of the four predictive
methods, using classic, subgraph, combined, and embedded
features to predict institution relevance for five conferences.
Error bars denote 95% confidence intervals.

Table 1: Average NDCG scores over all conferences per pre-
dictive method and type of feature.

LinRegr DecTree RanForest BayRidge
classic 0.65 0.58 0.64 0.51
subgraph 0.58 0.51 0.68 0.65
combined 0.62 0.46 0.68 0.60
node2vec 0.18 0.19 0.39 0.27
DeepWalk 0.14 0.17 0.25 0.18
LINE 0.17 0.23 0.56 0.23

this is clearly advantageous, even in settings where classic features
can be used. Additionally, subgraph features offer insights into the
importance of individual features as we discuss in the following.

4.2.5 Feature Importance. An important aspect of any feature
in applied learning is its expressiveness. While embedded features
offer no insights into the classification process due to their abstract
nature, classic and subgraph features contain further information.
We use the random forest regressor to obtain feature importance.

Classic Features. The most expressive classic features are the
rank of institutions and the total paper counts in previous years.
Other classic and linguistic features play a much less prominent
role. Since the prediction of the rank of an institution from the rank
in previous years is intuitive and constitutes expected behavior, the
knowledge we gain from this feature importance is limited.

Subgraph Features. In contrast, these features allow us to de-
rive more detailed insights. In Figure 4, we show the most discrimi-
native subgraph features for the rank prediction task. The subgraphs
can be interpreted to allow conclusions about the structure of the
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Figure 4: The two most discriminative subgraphs with rele-
vance scores for each conference according random forests.

data, for example by identifying important substructures. For the
ranking evaluation, we find that collaboration across institutional
boundaries is apparently a good indicator for relevance, as several
such structures exist in the most discriminative subgraphs (i.e., two
co-authors of different institutions). On the other hand, authors
with multiple affiliations do not play a significant role. While such
observations are anecdotal, they offer insights into both the data
and the task, which opens new possibilities for more specialized
and elaborate feature extraction or prediction techniques.

4.3 Label Prediction Evaluation
We also perform label prediction on the three networks introduced
in Section 4.1. For two of them, no data is available that would allow
us to engineer classic features. Thus, we focus on the comparison of
subgraph and embedded features. For each label type, we extract the
features of nodes with this label, partition the nodes into training
and test data, and train prediction classifiers for each type of feature.

4.3.1 Evaluation Metric. To evaluate the correctness of the pre-
dicted node labels, we use the Macro F1 score as the average of the
F1 scores for the individual nodes v in the test set T as

Macro F1 :=
1
|T |

∑
v ∈T

2 · prec(v ) · rec(v )
prec(v ) + rec(v )

(6)

where prec(v ) is the fraction of predicted labels that are correct and
rec(v ) is the fraction of correct labels that were predicted. We use
theMacro F1 score for comparability to the results of the embedding
features, which were originally evaluated with this metric.

4.3.2 Feature Extraction. For each network, we select 250 nodes
of each label and extract all three features for these nodes. For
LINE, node2vec, and DeepWalk, we utilize the recommended default
parameter values (see Section 4.2.2). We use emax = 5 for the
heterogeneous subgraph features. Since only the subgraph features
encode label information, we adjust the encoding scheme to avoid
unfair bias. While the label of the starting node is not obvious from
the subgraph encoding itself, the inclusion of the starting node’s
label may introduce a bias due to the increased frequency of the
label in the starting node’s features. Therefore, we apply an artificial
starting label to all start nodes during the extraction process that
masks the node’s label in the feature and avoids this bias.

4.3.3 Experimental Setup. We use logistic regression as a clas-
sifier to be in conformance with the reference evaluations of the
embedded features in the original publications [7, 20]. For all fea-
tures, we tune the regularization strength and use L2 regularization.

Table 2: Macro F1 scores for subgraph features for varying
levels of themaximum degree parameter. The value of dmax
is set to disable exploration beyond nodes with a degree
greater than the maximum degree in the given percentile.

dmax parameter level
90% 92% 94% 96% 98% 100%

LOAD 0.76 0.75 0.73 0.76 0.74 –
IMDB 0.44 0.39 0.43 0.55 0.54 0.55
MAG 0.55 0.35 0.36 0.30 0.40 –

Table 3: Execution time per node (in seconds) for feature ex-
traction. Percentiles denote the amount of nodes for which
the feature extraction completes in at most the given time.

subgraph features n2v DW LINE
mean 75% 90% 95% max mean

LOAD 32.1 19.6 29.7 53.0 1046 0.19 0.11 0.66
IMDB 2.6 1.7 3.0 6.7 47 0.01 0.01 0.64
MAG 25.2 10.4 11.0 19.5 2493 0.02 0.01 0.49

From the extracted node features, we train classifiers in a one vs.
all setting such that we obtain one classifier for each label. For
prediction, we then select the label with the highest probability
score for each node and use it for evaluation.

4.3.4 Maximum Degree Parameter Stability. In Section 3.2, we
introduced the parameter dmax as a heuristic to avoid the addition
of nodes to a subgraph that can be reached only through a hub
node.We evaluate this parameter on all three networks by adjusting
dmax to correspond to the percentage of nodes in the network that
have degree dmax or less. The results are shown in Table 2. For the
two larger networks, we do not show the results for dmax = ∞

(100%) since the extraction did not finish. The results for LOAD are
very stable, while the results for IMDB and MAG are less stable,
which correlates with the densities of the networks. Overall, we
find that dmax is a helpful heuristic for dense networks with large
hubs, where it enables efficient subgraph feature extraction, but
should not be overused for smaller or less dense networks. For the
following evaluations, we use a dmax value at the 90% mark.

4.3.5 Runtime Evaluation. In Table 3, we show the time require-
ments for extracting subgraph features. For comparison, we also
include the runtime of the three neural embedding approaches,
which are faster to extract than subgraph features. Among the em-
beddings, LINE is much slower than node2vec and DeepWalk. The
significant differences in runtime to the subgraph features can be
explained by sampling: while our method enumerates all subgraphs
around a node, the embedding techniques sample via a fixed set
of random walks or local searches. For the subgraph features, the
overall runtime varies and is heavily skewed since it correlates to
the skewed degree distribution: extracting features for nodes with a
high degree takes longer than for nodes with small degree. Outliers
(see column max) occur when a hub is the starting node (recall
that the degree heuristic does not apply in this case). On the one
hand, this problem is easy to avoid by not extracting features for
such nodes. On the other hand, such a sampling approach is of
course problematic for data in which certain features are unique
to nodes with high degree. In practice, we find that the prediction
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Figure 5: A-C: label prediction performance of the subgraph
features, LINE, node2vec, and DeepWalk for the three eval-
uation data sets. The size of the training data (and thus the
test data) is varied in steps of 10%. Error bars represent the
95% confidence interval of the F1 score for 100 variations of
the training/test set. D-F: Performance ondatawith partially
removed node labels for a training size of 90%.

performance does not decrease when we extract features only up
to the 95% mark (i.e., if we ignore the 5% of highest degree nodes).

4.3.6 Label Prediction Evaluation Results. Based on the previous
considerations, we demonstrate the performance of the subgraph
features for the label prediction task. We show the results of our
experiments on the three networks in Figure 5A-C for varying per-
centages of training data (the remainder is used for testing). The
performances of all features vary by network due to the varying
difficulty of the prediction task in each of the data sets. For the
most difficult data set (IMDB), all methods benefit the most from
an increased amount of training data, while this effect is less pro-
nounced for the other data sets. The results show that the node2vec
features are more performant than the DeepWalk features, which
corresponds to previous observations [7]. However, LINE performs
better than the other two neural embeddings in all cases, while all
neural embedding methods are outperformed by the heterogeneous
subgraph features by a large margin. Across all three data sets, only
in one instance does LINE provide results that are comparable to
the subgraph features. The overall gain in prediction performance
by using subgraph features instead of the best embedded features
is as high as 68.8% on the MAG data set.

The performance of the subgraph features for label prediction
can partially be attributed to the inclusion of label information in
the feature. In Figure 5D-F, we thus show the performance for only
partially labelled data on the three evaluation networks. To this

end, we randomly remove a percentage of labels from nodes in the
training data (i.e., we replace their label with an unlabeled-label).
We evaluate with 90% training and 10% test data. The embedded
features are invariant to node label removal and shown as horizon-
tal lines. While the performance of the subgraph features drops as
the percentage of unlabeled nodes increases, they still consistently
perform better than node2vec and DeepWalk, even when 75% of
the nodes have no label information. LINE initially performs worse
than the subgraphs, but catches up as larger percentages of node
labels are removed. Here, we find that the relative performance
of subgraph features compared to LINE strongly depends on the
initial performance gap on the data set. The larger this difference,
the longer it takes LINE to achieve comparable performance. On the
MAG data, LINE only reaches comparable performance once 75%
of node label are removed, while this is reduced to 25% for LOAD
and 10% for the IMDB data. A pattern that we observe for all three
data sets is a pronounced drop in the performance of the subgraph
features around 25% of removed node labels. Overall, as long as a
substantial fraction of node labels are available, the performance
of subgraph features is consistently strong. As a result, while het-
erogeneous subgraph features are naturally not the best choice for
bootstrap label prediction in setting with no label information, they
perform well even in settings with limited heterogeneity.

5 CONCLUSION
In this paper, we investigated heterogeneous subgraphs as features
for predictive analyses of heterogeneous information networks,
based on an efficient encoding scheme for fast (pseudo-) isomor-
phism tests. When used with machine learning techniques that
support the assessment of feature importance, they are directly
interpretable and enable the identification of discriminative sub-
structures in the network. We found that the subgraph features
perform at least as well as classic features that are extracted with
domain knowledge. In settings where such domain knowledge is
scarce, subgraph features may thus serve as out-of-the-box replace-
ments, which is remarkable since heterogeneous subgraph features
encode only the structural information of the network.

For the task of label prediction on three structurally diverse net-
works, subgraph features outperformed neural embeddings by a
large margin. Existing node embedding techniques provide, with-
out a doubt, powerful features in tasks for which they have been
well tuned, but are not quite as universally performant. As versatile
features for diverse prediction tasks on unseen data sets without
domain knowledge, we find heterogeneous subgraph features to be
easier to interpret, more versatile, and more performant, albeit at
the cost of an increased extraction time. Based on these results, we
provide a parallel implementation of our subgraph feature extrac-
tion framework in C++ and Python (see footnote in Section 1).

Future Work. We made no distinction between directed and
undirected edges since we found no significant difference in the
results for academic citation networks. However, this remains to
be investigated for other types of directed networks. Likewise, our
results indicate that subgraph encodings can be adapted to edge-
heterogeneous networks, but the performance of such encodings is
an open question whose answer stands to establish subgraphs as
truly universal features for learning in heterogeneous networks.
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