
Experimental and Theoretical Analyses of Memory 
Allocation Algorithms 

†Diego Elias, †Rivalino Matias, †Marcia Fernandes, ‡Lucio Borges 
† School of Computer Science, ‡ School of Mathematics 

Federal University of Uberlandia, Brazil 

diegoelias@comp.ufu.br, rivalino@fc.ufu.br, marcia@facom.ufu.br, lucio@famat.ufu.br 

ABSTRACT
In this paper, we present an experimental study to compare six 
user-level memory allocators. In addition, we compare the 
experimental results with the asymptotic analyses of the evaluated 
algorithms. The experimental results show that parallelism affects 
negatively the investigated allocators. The theoretical analysis of 
the execution time demonstrated that all evaluated allocators show 
linear complexity with respect to the number of allocations. 

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management – 
allocation/deallocation strategies, main memory; D.4.8 
[Operating Systems]: Performance – measurements. 

General Terms
Experimentation, Measurement, and Performance. 

Keywords
Memory allocators, multithreading, algorithm analysis. 

1. INTRODUCTION
In computer systems engineering, memory management has a 
significant impact on performance. Real-world applications need 
to allocate and release portions of memory, many times, during 
their runtime [6]. The code responsible for these operations is 
usually part of a system library (e.g., libc), which is called user-
level memory allocator (UMA) [11].  

Previous works (e.g., [1], [3], [4], [6], and [9]) have evaluated 
different UMAs from an experimental point of view. They used 
real applications and benchmark tools, which sometimes make it 
difficult to control important factors for a more comprehensive 
UMA evaluation, such as varying the size of memory blocks, 
number of threads, number of allocations per thread, and others. 
We also observe that many of these previous works did not apply 
a rigorous statistical method to plan their experiments and analyze 
the results. 

Hence, in this work we evaluate six widely adopted memory 
allocator algorithms through statistically controlled experiments. 
We compare the performance of the allocators in terms of 
execution time and memory usage. Complementarily, the 
algorithms are also evaluated from a theoretical viewpoint by 
means of asymptotic analysis. 

2. METHODOLOGY
This work evaluated the following user-level memory allocators: 
Hoard (v3.8) [4], Ptmallocv2 [8], Ptmallocv3 [8], TCMalloc 
(v1.5) [7], Jemalloc (v2.0.1) [5], and Miser [12]. A detailed 
description of each allocator may be obtained in [6]. The 
experiments were conducted in a test bed composed of a quad-
core computer running the Linux OS (kernel 2.6.37). We created 
a test program that allows us to control the number of allocations 
(NA), size of allocations (SA), and number of threads (NT). We 
also control a fourth factor related to the number of processors 
(NP). Each thread performs NA/NT allocation requests, where 
every request size is a random value drawn from a Uniform 
distribution of the specified size interval (SA), and filled with 
zeros right after their allocation. After the memory usage of all 
allocated blocks, 50% of them are released; the first half of the 
allocated area. This releasing policy enables us to measure the 
UMA’s allocation overhead, which includes the effects of internal 
and external heap fragmentations [11]. Table 1 summarizes the 
adopted factors and their respective levels. The level values used 
are based on previous experimental works (e.g., [2], [4], and [6]).  

Table 1. Experimental Plan Summary 
Levels 

Fa
ct

or
s Number of allocations (NA) 500 thousands,  1 million 

Size of allocations (SA) 16..64 bytes,  256..1024 bytes 
Number of threads (NT) 1,  2,  3,  4 

Number of processors (NP) 1,  2,  3,  4 

To identify the principal factors and interactions that influence the 
response variables (execution time and memory consumption), we 
use the analysis of variance (ANOVA) technique [10]. In order to 
find out the statistically significant interactions, we applied the 
Tukey test [10] for multiple comparisons of the response variable 
averages, assuming a significance level of 5% (i.e., α=0.05). 

Our experimental plan is based on a mixed 2 and 4 Level 
Factorial Design, which resulted in a total of 64 treatments. Each 
treatment is a test for a given combination of factors and levels 
[10]. We repeated each test execution 10 times, so in total we 
execute 768 tests per allocator. For each test, we averaged the ten 
replications’ values for each response variable.  

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAC’14, March 24-28, 2014, Gyeongju, Korea. 
Copyright 2014 ACM 978-1-4503-2469-4/14/03…$15.00. 

1545http://dx.doi.org/10.1145/2554850.2555149

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2554850.2555149&domain=pdf&date_stamp=2014-03-24


3. EXPERIMENTAL RESULT ANALYSIS
3.1 Execution Time (ET) 
For the six allocators, we found that all evaluated factors 
presented statistically significant effects on ET. Consistently, for 
all allocators the lowest averages of execution time were obtained 
with a single processor (NP=1), and the highest averages of 
execution times with four processors (NP=4) as it can be observed 
in the Figure 1. For scenarios with one thread (NT=1) and four 
processors the lowest execution times are obtained with 
Ptmallocv2 and Ptmallocv3, regardless of the other factors. For 
scenarios with four threads (NT=4) and four processors, the 
TCMalloc and Ptmallocv2 present the lowest execution times. For 
all evaluated scenarios, the lowest average of execution times is 
observed with Ptmallocv2 followed by TCMalloc and Jemalloc. 

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

500K 1M 500K 1M 500K 1M 500K 1M 500K 1M 500K 1M

ptmalloc2 ptmalloc3 tcmalloc hoard jemalloc miser

NP= 1 NP= 2 NP= 3 NP= 4

Figure 1. Allocators’ execution time for NT=4 × SA=16..64. 

3.2 Space Usage (SU) 
In general, all factors showed significant influence on SU. In all 
allocators, for scenarios with small allocations (SA=16..64) the 
lowest average of SU was obtained with one thread and two 
processors (NP=2 and NT=1). We hypothesize that the influence 
of processors and threads on SU may be a consequence of the 
multiple copies of heap area across processors or threads, which is 
adopted in many allocators to minimize the effect of thread-
contention when multiple threads are accessing the same heap. 
For most common scenarios (NP=1 or NP=4 combined with 
NT=1 or NT=4), the allocators that present the lowest average of 
SU are Ptmallocv3 followed by Jemalloc. In average, the same 
result was observed for all other test scenarios. The third best 
allocator regarding SU is Ptmallocv2, which shows an average SU 
of approximately 54.12% higher than Ptmallocv3 and Jemalloc. 

4. ASYMPTOTIC ANALYSIS
In order to determine the functions that express the execution time 
of the evaluated allocation algorithms, the three most important 
factors, from the theoretical viewpoint, are the number of 
processors (NP), number of threads (NT), and number of 
allocations (NA). Given that NP is quite limited in regular 
computers, for this analysis we mainly considered NT and NA. 
All allocators’ algorithms showed linear asymptotic complexity 
for execution time and they could be represented as O(NA + NT). 
However, NA usually is greater than NT, so we considered their 
complexity as O(NA). 

5. CONCLUSIONS
In this work, we presented experimental and theoretical analyses 
of six memory allocation algorithms. In general, based on the 
experimental results and considering the common factor 
interactions identified for all allocators, we group them in the 

following clusters: (Hoard, Jemalloc), (Ptmallocv2, Ptmallocv3, 
TCMalloc), and (Miser), where the order does not mean 
importance. In terms of execution time (ET), the best results were 
obtained with one processor, and the worst results with four 
processors, indicating that for the evaluated allocators 
multiprocessing is not presenting benefits from the speedup 
viewpoint. The allocator that presented the average lowest 
execution time was Ptmallocv2, followed by TCMalloc, Jemalloc, 
Ptmallocv3, Miser, and Hoard. In terms of SU, the best allocators 
were Ptmallocv3 and Jemalloc, which presented the average of 
space used reduced by 50% compared to the other allocators; they 
are followed by Ptmallocv2, Miser, Hoard, and TCMalloc. 

6. REFERENCES
[1] Attardi, J., and Nadgir, N. A Comparison of Memory 

Allocators in Multiprocessors, http://developers.sun.com/ 
solaris/articles/multiproc/multiproc.html, 2003. 

[2] Barootkoob, G., Sharifi, M., Khaneghah, E. M., and 
Mirtaheri, S. L. Parameters Affecting the Functionality of 
Memory Allocators, In IEEE Conference on Communication 
Software and Networks (Xi'an, May 27-29, 2011). 2011. 

[3] Berger, E.D., Zorn B., and McKinley, K.S. Reconsidering 
Custom Memory Allocation. In Proceedings. of the 
Conference on Object-Oriented Programming: Systems, 
Languages and Applications (Washington, Nov. 4-8, 2002). 
ACM SIGPLAN Notices, New York, 2002. 

[4] Berger, E.D., McKinley, K.S., Blumofe, R.D., and Wilson, 
P.R. Hoard: a scalable memory allocator for multithreaded 
applications, ACM SIGARCH Computer Architecture News, 
v.28:5, 2000, 117-128.

[5] Evans, J. A scalable concurrent malloc() implementation for 
FreeBSD. In Proceedings of the The BSD Conference 
(Ottawa, May 12-13, 2006). 2006. 

[6] Ferreira, T. B., Matias, R. J., Macedo, A., and Araujo, L. B. 
An Experimental Study on Memory Allocators in Multicore 
and Multithreaded Applications. In Proceedings of 
International Conference on Parallel and Distributed 
Computing, Applications and Technologies (Gwangju, Oct. 
20-22, 2011). 2011, 92-98. 

[7] Ghemawat, S., and Menage, P. TCMalloc: Thread-Caching 
Malloc, http://goog-perftools.sourceforge.net/doc/ 
tcmalloc.html 

[8] Gloger, W. Ptmalloc, http://www.malloc.de/en/ 
[9] Masmano, M., Ripoll, I., and Crespo, A. A comparison of 

memory allocators for real-time applications. In Proceedings 
of 4th Int'l workshop on Java technologies for real-time and 
embedded systems (Paris, Oct. 11-13, 2006). 2006, 68-76. 

[10] Montgomery, D. C. Design and Analysis of Experiments. 
John Wiley, 3rd edition, 2000. 

[11] Vahalia, U. UNIX Internals: The New Frontiers, Prentice 
Hall, 1995. 

[12] Tannenbaum, T. Miser: A dynamically loadable memory 
allocator for multithreaded applications 
http://software.intel.com/en-us/articles/miser-a-dynamically-
loadable-memory-allocator-for-multi-threaded-applications 

1546


