The Journal of Systems & Software 203 (2023) 111752

The Journal of Systems & Software

Contents lists available at ScienceDirect

SOFTWARE

»

journal homepage: www.elsevier.com/locate/jss

Empirical analysis of security-related code reviews in npm packages™ R

Check for

Mahmoud Alfadel ** Nicholas Alexandre Nagy °, Diego Elias Costa ¢, Rabe Abdalkareem9, “*®==

Emad Shihab®

@ University of Waterloo, Canada

b Concordia University, Canada

¢ University of Quebec in Montreal, Canada
4 Omar Al-Mukhtar University, Libya

ARTICLE INFO

Article history:

Received 2 July 2022

Received in revised form 3 May 2023
Accepted 15 May 2023

Available online 19 May 2023

Dataset link: https://zenodo.org/record/753
8187#.YIIYE-zMKEs

Keywords:

Open source software
Third-party package
Code review

Security

ABSTRACT

Security issues are a major concern in software packages and their impact can be detrimental if
exploited. Modern code review is a widely-used practice that project maintainers adopt to improve the
quality of contributed code. Prior work has shown that code review has an important role in improving
software quality, however, in-depth analyses on code review in relation to security issues are limited.
Therefore, in this paper, we aim to explore the role of code review in finding and mitigating security
issues. In particular, we investigate active and popular npm packages to understand what types of
security issues are raised during code review, and what kind of mitigation strategies are employed
by package maintainers to address them. With pull requests (PRs) being the medium of code review
under study, we analyze 171 PRs with raised security issues. We find that such issues are discussed at
length by package maintainers. Moreover, we find that code review is effective at identifying certain
types of security concerns, e.g., Race Condition, Access Control, and ReDOS, as dealing with such issues
requires in-depth knowledge of the project domain and implementation specifics. Interestingly, we
also observe that some projects have automated tools integrated in the project development cycle,
which enhances the identification of frequent cases of certain security issues. When analyzing how
maintainers respond to the raised security issues, we find that most of the issues (55%) are frequently
addressed and mitigated. In other cases, security concerns ended up not being fixed or are ignored by
project maintainers. Leveraging our findings, we offer several implications for project maintainers to

support the role of reviewing code in finding and fixing security concerns.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

when checking their code for security issues and vulnerabilities,
in order to reduce their impact as much as possible on the

Security vulnerabilities have a large negative impact when
found in software packages. In fact, the impact of these vulnera-
bilities is magnified if they are identified in production, i.e., after
the package’s version is released, as the new version of the
package will be used in a wide number of other software projects,
which increases the chance for exploitation. An example of that
is the Equifax cybersecurity incident, caused by a web-server
vulnerability in the Apache Struts library, which led to the il-
legal access of sensitive information from almost half of the US
population (143 million American citizens) (Equifax, 2021). Such
examples show that package maintainers must be very rigorous

* Editor: Kelly Blincoe.
* Corresponding author.

E-mail addresses: malfadel@uwaterloo.ca (M. Alfadel),
Nicholas.a.nagy@protonmail.com (N.A. Nagy), diego.costa@concordia.ca
(D.E. Costa), Rabe.abdalkareem@carleton.ca (R. Abdalkareem),
eshihab@encs.concordia.ca (E. Shihab).

https://doi.org/10.1016/j.jss.2023.111752
0164-1212/© 2023 Elsevier Inc. All rights reserved.

software ecosystem that depends on them.

Modern code review is a well-adopted practice in industrial
and open source projects, especially with the support of the
pull-based development model, for the purpose of ensuring soft-
ware development quality (McIntosh et al., 2016; Alfadel et al.,
2021b). Previous research (e.g., McIntosh et al. (2016) and Dey
and Mockus (2020)) provided evidence of the effect of the code
review process on the overall software quality level. For example,
Dey and Mockus (2020) examined the impact of code review
characteristics on accepting pull requests (PRs) in the npm pack-
ages, and found that some measures (e.g., PR author and reviewer
experience) could influence the PR quality. A recent study by Paul
et al. (2021) built a regression model on the Chromium project to
identify factors that are associated with successfully identifying
vulnerabilities from reviews. They found, for example, that the
number of directories under review correlates negatively with
identifying vulnerabilities. Given that understanding the effect of
code review specifically in relation to software security issues

https://doi.org/10.1016/j.jss.2023.111752
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2023.111752&domain=pdf
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
mailto:malfadel@uwaterloo.ca
mailto:Nicholas.a.nagy@protonmail.com
mailto:diego.costa@concordia.ca
mailto:Rabe.abdalkareem@carleton.ca
mailto:eshihab@encs.concordia.ca
https://doi.org/10.1016/j.jss.2023.111752

M. Alfadel, NA. Nagy, D.E. Costa et al.

is critical, our study aims to increase the awareness of project
maintainers and researchers to the role of code review in iden-
tifying and dealing with security issues in open source projects.
In addition, studying this can help us better understand how
security issues are being tackled during code review by project
maintainers.

Therefore, to shed light on the role of code review from a
security perspective, our study aims to analyze code reviews in
a set of 10 active, mature, and popular JavaScript GitHub projects
from the npm ecosystem. For those projects, we mine the security
issues being discovered within PRs of the projects’ history, and
manually examine more than 4000 review comments in the
projects.

We set out to study three Research Questions (RQs). In the
first stage of our study, we analyze how often security issues
are identified during code review (RQ;). Out of the 10 studied
projects, we find 9 projects in which security issues are raised
during code review, with 171 PRs containing evidence of security
discussion. Moreover, we observe that such issues are raised in
a small fraction of PRs (0.11%-3.56%), affecting also a small frac-
tion of project files (0.25%-3.63%). However, project maintainers
discuss the issues at length in the PRs, i.e., 4.82%-28% of all PR
comments are related specifically to the security related concerns.

Also, we conduct in-depth manual analysis to understand
the types of security issues that package maintainers discover
and discuss during code review (RQ). Our manual investigation
shows that the identified security issues in the projects belong to
14 types. Specific types of these issues are more common across
the projects, e.g., Race Condition, Access Control, Sensitive Data
Exposure, XSS, Documentation, and Overflow.

Finally, we analyze how package maintainers handle and re-
spond to the identified security issues (RQs). We find that the
majority (54.96%) of the raised security issues are fixed and
mitigated. However, many of the issues seem to be considered as
having low threat to the projects (28.65%). In a few cases, we find
that the project maintainers decided not to fix the issues (8.18%)
or even respond to them (4.67%).

Novelty of the study. Prior research has also touched on the topic of
determining the types of vulnerabilities that are able to be iden-
tified during code review in open source applications (e.g., Bosu
et al. (2014) and Bosu and Carver (2013)). However, we add to
the previous work by looking at how project maintainers handle
and respond to the identified security issues. Furthermore, we
compare issues identified during code review to post-release
security vulnerabilities (advisories) that have been reported after
the package release production. Such comparison will help us
understand whether there are certain types of issues that code
review can be effectively employed to identify. Based on our
investigation, we offer some suggestions and implications that
support the role of code review for the security of open-source
packages.

Paper organization. The rest of the paper is organized as follows.
Section 2 describes our study methodology. Section 3 presents
the results of our study. Section 4 presents our discussion and
how our findings lead to implications for practitioners and future
research. Section 5 presents the related work. Section 6 presents
the threats to validity. Section 7 concludes our paper.

2. Methodology

The main goal of our study is to examine the role that code
review plays in identifying and fixing security issues that exist in
open source software projects. To achieve our goal, we resort to
analyzing the discussion of code reviews throughout the lifetime
of open source projects. Our study focuses on analyzing projects

The Journal of Systems & Software 203 (2023) 111752

that have been published as packages in the Node Package Man-
ager (npm ecosystem). We mine and analyze Pull-Requests (PRs)
that exist in the projects. Developers use the PR feature in their
GitHub projects as a platform for code reviews. To this end, we
first (A) collect a representative set of GitHub projects. Then,
(B) we identify candidates for PRs with security-related reviews.
Finally, we (C) manually validate the identified PRs, which we use
for our study analysis. Fig. 1 provides an overview of our general
approach, detailed in the remainder of the section.

2.1. Project selection

We analyze code reviews in JavaScript projects that develop
packages published in the npm package ecosystem. We chose
to focus on JavaScript due to its wide popularity amongst the
development community as JavaScript has consolidated itself as
the most popular programming language (Stack Overflow, 2021;
Alfadel et al., 2020). The npm ecosystem is the largest software
package ecosystem to date, surpassing 1.9M packages published
in the ecosystem (npm - Libraries, 2020; Abdalkareem, 2017),
with popular packages being used in thousands of program ap-
plications (Zerouali et al., 2021). Its popularity and reach, makes
the npm ecosystem a prime target for attackers, and maintainers
of JavaScript packages have to act fast to identify and remediate
software vulnerabilities before they are exploited (Alfadel et al.,
2021a; Zimmermann et al., 2019). Consequently, npm has a well-
renowned advisory database for reporting security vulnerabilities
that affect its projects (npm, 2020).

We collect all npm projects available in the npm advisories
dataset (npm, 2020). These projects have some level of popularity
and are known to have concerns about security as vulnerabilities
have been identified and remediated in their code base.

Our initial dataset contains 1219 unique projects. To begin
filtering these projects to a more feasible dataset to work with,
we wrote a script to aid in this process. Then, using this auto-
mated script, we filter out projects that do not have links to their
repositories, as identified with the npm registry, since we have
no way of tracking the history of their code review. Of these
projects, only 666 projects had links to GitHub repositories. To
further curate the dataset for our manual analysis, we apply a
filtration process on the projects. Using our automated scripts, we
select projects that satisfy all the following filtration criteria:

e Security concern: we choose projects that have a minimum
number of 2 vulnerability advisories, as we want to include
projects that have had a history of identifying vulnerabilities
and hence, should be discussing security in their develop-
ment history (Walden, 2020). Applying this filtration step
left us with a dataset of 89 projects.

e Popularity: we choose projects with over 10,000 downloads
per month, as popular projects are critical to the commu-
nity, and many developers rely on them for their software
development projects (Software, 2019). Upon applying this
criteria, we were left with 67 projects.

e Recent activity: we choose projects with at least ten commits
made in the last month prior to the time of collecting our
dataset (i.e., August, 2021), as we want to avoid projects that
are no longer active or relevant. Relevancy and activity are
essential ways to ensure that the projects we are using for
our analysis are current and modern (Kalliamvakou et al.,
2014). This step ends us with 37 projects.

It is important to note that our study analysis is very time-
consuming, given that such projects contain thousands of PRs,
and each PR requires a significant time investment to recognize
and understand the context of the security issues being identified.
As a result, to make the study feasible, we draw the line at the
top 10 most active projects, as this is inline with prior studies that

M. Alfadel, NA. Nagy, D.E. Costa et al.

882 PRs

The Journal of Systems & Software 203 (2023) 111752

~,

1

2 k. \

Obtain initial set of
keywords (48) 7

Select JavaScript
projects

v

e —————

Refine the list of
keywords (26)

Validate PRs
manually

————————

’
-

PO —

.
!
\,

Oy p——"

(®)

©

Fig. 1. An overview of our study approach.

Table 1
Overview of projects.

Project Project description Language Age (in years) # PRs

Marked A low-level compiler for parsing markdown JavaScript, HTML 10 years 758
without caching or blocking for long periods of
time (marked - npm, 2021).

Moment A lightweight date library for parsing, validating, JavaScript 10 years 1,812
manipulating, and formatting dates (moment -
npm, 2021).

Parse-server An open source backend that can be deployed to JavaScript 5 years 2,869
any infrastructure that can run Node.js
(parse-server - npm, 2021).

Sequelize A promise-based Node.js ORM for Postgres, MySQL, JavaScript, TypeScript 11 years 3,359
MariaDB, SQLite and Microsoft SQL Server
(sequelize - npm, 2021).

Node-red A framework that provides a browser-based editor JavaScript 8 years 1,140
that makes it easy to write APIs and online
services (node-red - npm, 2021).

Strapi A fully customizable open-source software that JavaScript 6 years 2,878
provides a headless content management system
(strapi - npm, 2021).

Infor-design A framework-independent Ul library consisting of JavaScript, TypeScript, HTML, CSS 5 years 2,524
CSS and JS that provides tools to create user
experiences (infor-design, 2021).

Electron A framework that helps build cross-platform JavaScript, TypeScript, C++, Python, 8 years 11,794
desktop apps with JavaScript, HTML, and CSS HTML
(electron - npm, 2021).

React A library for building user interfaces (react - npm, JavaScript, TypeScript, C++, CSS, 8 years 9,673
2021). HTML

Uglify-js A parser, minifier, compressor and beautifier toolkit JavaScript, HTML, Shell 9 years 1,197

(uglify-js - npm, 2021).

have performed similar work (Paul et al., 2021; Bosu, 2014; Ebert
et al,, 2019); the number of analyzed projects in these studies
varies between one to ten projects. We use the aforementioned
Recent Activity metric as a basis to rank the projects, since such
projects tend to be rich in pull requests, and consequently have
higher chances for finding and discussing security issues (Walden,
2020).

Table 1 depicts the selected ten projects for our study. For
each project, we present the project’s domain, the programming
languages used through the development lifetime, the age, and
the total number of PRs in the project. As shown in the table,
these projects cover multiple languages and application domains.
Furthermore, the projects have a considerable long development
lifespan and most projects have thousands of PRs in the project
repository.

2.2. Identification of PR candidates

The goal of this phase is to identify PRs with security-related
reviews in the selected projects. To that aim, we conduct a three-
step methodology: (1) we elicit a set of security-related key-
words, (2) we refine this list of keywords, and (3) we use the

refined list to identify the set of PRs with security-related reviews.
In the following, we describe each step in details.

(1) Obtaining initial dataset of security-related keywords. To
identify relevant PRs that are of interest to our study, we use
security-related keywords. Influenced by the related literature,
we initially adopt a dataset of 48 security-related keywords used
in the previous studies (Paul et al., 2021; Bosu, 2014). We use this
initial set of keywords and apply each of them, using a regular
expression, to identify security-related reviews in the projects. To
this aim, we collect all the comments and discussions from all PRs
in the projects and identify PRs that contain any keyword from
our previously selected keywords dataset. After running the 48
keywords against all the PRs (i.e., 38,004 PRs), we identify 3503
PRs as candidates for our study.

(2) Refining the list of keywords. We identify 3503 candidates
of PRs, however, through a preliminary manual inspection of
the identified PRs, we observe that a considerable share of PRs
were not relevant for our study, i.e., they do not discuss security-
related issues. This is because some of the used keywords are
specific to languages other than JavaScript, and hence, include
a lot of noise in our PRs dataset. For example, the initial list of
keywords contained keywords such as “css”, which in many of

M. Alfadel, NA. Nagy, D.E. Costa et al.

The Journal of Systems & Software 203 (2023) 111752

Table 2
List of refined security-related keywords.
Vulnerability type CWE ID Keywords
Race condition 362-368 Race, racy
Buffer overflow 120-127 Overflow
Integer overflow 190, 191, 680 Overflow, underflow
Improper access 22, 264, 269, 276, 281-290 Unauthenticated, gain access, permission
Cross Site Scripting (XSS) 79-87 Cross site, XSS

Denial of service (DoS)/Crash 248, 400-406, 754, 755

Deadlock 833
SQL injection 89
Cross site request forgery 352

Common keywords -

Denial service, DOS, denial of service®, DDOS?, redos®

Deadlock

Injection

Cross site, CSRF, forged

Security, vulnerability, vulnerable, overrun, exploit, insecure, breach, threat

2Keywords in italic are our additions to this list.

the cases for our selected projects, e.g., Improve ctm edit (2021),
2834 - Adjust placement (2021) and Robust animation (2021),
refers to cascading style sheets, the styling language for web
pages, and not Cross Site Scripting (CSS) vulnerabilities, as it is
commonly referred to in the security domain.

Therefore, to reduce the number of irrelevant PRs from our
candidate set, we further verify and refine the list of keywords.
First, we randomly select a statistically significant sample of the
candidate set for each keyword. The size of the chosen sample
is significant enough to satisfy a 95% confidence level with a
5% confidence interval for each designated population. Once the
sample of PRs for each keyword is selected, we split the full
dataset of identified PRs into two along each keyword (i.e., each
dataset has half the number of PRs for each keyword), and a single
author was assigned to each half of the dataset to review whether
each PR could contain a discussion about security (i.e., the first
two authors independently examined the PRs). Since this step
was meant to eliminate keywords that produce too many false
positives, the authors were encouraged to accept any PR that had
even the slightest hint of a potential security issue, so that the
most potentially useful keywords are maintained. Furthermore, to
mitigate potential personal biases, the authors cross-referenced
the number of PRs retrieved from each keyword to make sure that
no author was dismissing PRs too easily and resulting in a lower
amount of PRs filtered. If the keyword was used in a security
discussion of the PR, then we consider the PR a relevant case at
this stage of the study and irrelevant otherwise.

After going through all the samples of the PRs for each key-
word, we decide the inclusion of the keyword by setting a reason-
able threshold, i.e., if a keyword retrieves less than 10% relevant
cases in its sample, we remove it from our list of keywords. Other-
wise, the keyword is included. We chose 10% because we wanted
to use a low threshold to preserve as large a variety of keywords
as possible, as limiting the amount of keywords could bias the
dataset towards only finding issues related to those specific key-
words. This process yields 23 refined keywords. Note that as we go
through the PRs of the relevant cases, we identified keywords that
were being used in security-related reviews and were not in our
initial list of keywords. This step ends us with three newly added
keywords, namely, denial of service, DDOS, redos. Table 2 shows
the list of the final 26 unique keywords used in our study. The
keywords are associated with a Common Weakness Enumeration
(CWE) (CWE, 2021). CWEs are well-defined classifications for
the explored software weaknesses (e.g., CWE-121 corresponds to
Buffer Overflow security vulnerabilities).

(3) Identifying PR candidates for our study.

We then use the refined list of 26 keywords and use an auto-
mated script to help search for the keywords in the comments of
PRs. The PRs that have the keywords in their comments are added
to our dataset of PRs for the study. This process yields a total of
882 PRs as candidates for our study.

2.3. Manual validation of the identified PR candidates

In the previous phase, we were able to curate a refined list
of keywords to identify PR candidates (882 PRs), and reduce the
number of irrelevant PRs for our study. However, some of those
PRs might still be wrongly identified due to the limitation of our
keyword search technique. For example, our technique flags this
PR (Reload grant, 2021) as relevant because one of the review
comments in the PR contains the “permission” keyword:

“..when users change the provider config from UI (Roles and
Permission page), we will save the new config into db, and also
sync it into JSON file as well, right?”

As shown in the quote, the “permission” keyword is used in
the context of a webpage name, and has no security implica-
tions to the project. Examples like this motivated us to further
manually validate the set of 882 PRs. Hence, in this step we
conduct a thorough manual analysis on the 882 PRs to filter out
the irrelevant cases from our further analysis.

To filter out PRs that did not discuss security-related reviews
(from our candidate set), two authors independently and manu-
ally look through all the 882 PRs. Both authors examine whether
the contributors and reviewers of each PR discuss security-related
topics in the PRs’ comments. If so, the PR is included in the dataset
for our later analysis. To evaluate the agreement between the two
authors, we used Cohen’s kappa coefficient (Cohen, 1960), which
is a well-known statistical method that evaluates the inter-rater
agreement level for categorical scales. In our manual labeling of
the PRs, the level of agreement between the two authors was of
+0.92, which is considered to be an excellent agreement (Fleiss
and Cohen, 1973). At a macro scale, the authors extract the PRs
information in eight rounds (almost 110 PRs per batch). Upon
completion of each round, they meet and discuss any conflicts
about including the PR. The goal of these meetings is to address
any inconsistencies and to work together to resolve them. In the
case that the authors have derived conflicting information about
the PR, they will discuss until an agreement is reached.

Our in-depth manual analysis identifies 171 validated PRs with
security-related reviews (out of 882 PRs), which span across all
the projects in our dataset (Alfadel, 2023). Fig. 2 shows an exam-
ple of a relevant PR that discusses a security issue during code
review. In this figure, one of the PR’s reviewers in the Marked
project asked a second reviewer to check whether the code is
vulnerable against a ReDOS security issue.

Finally, during our analysis we observe that the security issues
discussed in the PRs could occur not only due to security concerns
in the proposed changes in the PR but also due to concerns al-
ready existing in the system. Therefore, we also examine whether
the PR is introducing a security issue or if the issue was already
in the project/system prior to the PR. We find that 70.76% of
the security issues in our dataset are raised by reviewers to

M. Alfadel, NA. Nagy, D.E. Costa et al.

The Journal of Systems & Software 203 (2023) 111752

Render html in heading #1622

-merged 3 commits into markedjs:master from _ l:l on Mar 22,2020
® _requested review from -and - on Mar 20,2020

$~ Merged

Member Author

. -commented on Mar 20, 2020

_ could you check that /<!?2\/? [\w-1+(?: .x%)?\/?>/g isn't vulnerable to redos?

Member

. - commented on Mar 20, 2020

Would like to hold off on my approval until - (or someone) can review for REDOS.

&1

. -commented on Mar 21,2020

© -

According to http://redos-checker.surge.sh/, it is vulnerable, which makes sense since the lookahead can also match characters in

[\w-]1+ .Isuggest /<[!\/\w-].%?>/g , which provides mostly similar results without being vulnerable.

That said, both of these options break rather easily... regex isn't a good html parser. The test added implies that the contents

within a tag should be preserved... but what should be done here?

" target="_blank">tag

Fig. 2. Example of a security issue raised during code review (Render html, 2021).

point out a security concern related to the proposed PR. In other
words, the changes made in the PR introduce security issues. For
example, in Strapi PR,! the PR proposed a functionality related to
database connection errors. However, reviewers raised concerns
about exposing critical user information by logging information
to the console. Stapi issue” is another example where the PR
author proposed functionality that introduced a security concern
raised by reviewers in the discussion. In 29.24% of the cases, we
find that the PR is fixing security issues that were in the system
before the PR creation time. For example, in this PR,? the author
proposed a way to implement fresh tokens for the authentication
flow, i.e., the functionality adds artifacts that allow application
systems to perform the authorization and authentication process
(which are security components in the project). During the PR
discussion, we observe that reviewers were concerned about how
the authentication is implemented, i.e., the refresh tokens are not
secure enough because the proposed flow cannot verify which
user is requesting the token.

3. Results

In this section, we answer our RQs. For each RQ, we provide a
motivation, describe the approach, and present the results.

3.1. RQ1: How often are security issues identified during code re-
view?

Motivation: The goal of this RQ is to gain an initial overview
of the prevalence of security issues identified in a code review,
allowing us to quantify the degree of effectiveness of code review

1 https://github.com/strapi/strapi/pull/3163.
2 https://github.com/strapi/strapi/pull/5330.
3 https://github.com/strapi/strapi/pull/2704.

for security purposes. In turn, this will help project maintainers
and the community to set realistic expectations on the effort that
is put in security-related code reviews and how often security
issues are raised in regular code review processes.

In particular, we examine how often a security-related concern
is raised in code reviews under three different granularity levels:
(a) number of PRs; (b) number of files touched by the PRs; and
(c) number of security-related comments in the PRs.

Approach: We employ the methodology explained in Section 2.3
to manually identify the PRs with security-related reviews in each
of the studied projects. To identify the files changed in the PRs
and the prevalence of security comments in the overall PR discus-
sion, we use the metadata of each PR, to get the files that contain
the security issue and the comments that discuss the security
issue. More specifically, we use the following methodology to
gather our results:

e To find the distribution of security issues at the PR level, we
quantify the number of security-related PRs per project.

o At the file level, we quantify the number of unique files that
contain the identified security issue per PR, and sum up the
number of unique files for each project.

e Finally, at the comment level, we quantify the number of
comments that specifically discuss the security issue per PR,
and then sum up the total number of such comments for
each project.

We normalize the result by the number of total PRs in the project,
total files that the project has, and total comments in the analyzed
PRs, respectively.

Result: Table 3 shows the distribution of the 171 PRs identified in
the studied projects at different levels of granularity. We observe
that the Infor Design project is the only project that had no

https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/5330
https://github.com/strapi/strapi/pull/2704

M. Alfadel, NA. Nagy, D.E. Costa et al.

Table 3
Distribution of security-related issues at different granularities, per project.
Granularity Project # Total # Security-Related %
Marked 758 27 3.56
Moment 1,812 2 0.11
Parse-server 2,869 19 0.66
Sequelize 3,359 19 0.57
PRs Node-red 1,140 6 0.53
Strapi 2,878 18 0.63
Electron 11,794 47 0.39
React 9,673 31 0.32
Uglify-js 1,197 2 0.17
Marked 327 9 2.75
Moment 786 2 0.25
Parse-server 413 15 3.63
Sequelize 491 13 2.65
Files Node-red 1,187 6 0.50
Strapi 3,360 15 0.45
Electron 2,130 42 1.97
React 2,105 30 1.43
Uglify-js 276 2 0.72
Marked 665 108 16.24
Moment 25 7 28
Parse-server 380 49 12.89
Comments in Sequelize 809 39 4.82
Security-PRs Node.-red 65 8 12.31
Strapi 309 39 12.62
Electron 1,250 137 10.96
React 777 63 8.11
Uglify-js 35 5 14.29

security issues raised during code review, i.e., the 171 cases are
distributed across the remaining 9 projects in our dataset.

As a result, in terms of the number of security-related PRs,
we find that the 171 PRs correspond to 0.49% (less than 1%) of
all PRs in the projects. Concretely, the project ELectron has the
largest occurrence of security issues raised during code review
(47 PRs), while there are only 2 PRs with raised security concerns
in Moment and Uglify-js projects. Overall, the rate of PRs
with security-related reviews varies from 3.56% in Marked to
only 0.11% in Moment, showing that only a minority of PRs raise
any concerns about security. Consequently, the identified security
issues are concentrated on a small fraction of the projects’ files
(0.25%-3.63%). For example, marked has 27 security issues that
are identified in 9 files out of the 327 the project currently
contains.

Although the PRs with security-related reviews seem rare at
both the PR and file granularity levels, once a maintainer ex-
presses a security concern on the PR, maintainers discuss it at
length in the PRs. Between 4.82%-28% of all comments in the 171
PRs are related specifically to the security related concern.

Security issues are raised in a small fraction of PRs (0.11%-
3.56%), affecting also a small fraction of project files (0.25%-
3.63%). However, raised security issues are discussed at
length by project maintainers (4.82%-28% of all comments
in the PRs are security-related comments).

3.2. RQ2: What types of security issues are identified during code
review?

Motivation: The goal of this RQ is to understand the types of se-
curity issues that project maintainers discover and discuss during
the code review process. This investigation is important to help
researchers and practitioners compare and contrast these results
with other approaches, such as bug bounties, code inspections,
all the way to software inspection tools that have been very

The Journal of Systems & Software 203 (2023) 111752

well studied (e.g., Aloraini et al. (2019), Yang et al. (2019) and
Imtiaz et al. (2021)). More important, such comparison will help
us understand the types of issues where code review can be
effectively employed and where maintainers may need better
assistance to identify issues at code review time.

Approach: To categorize the identified security issues, we resort
to in-depth manual analysis of the 171 PRs in our dataset. In
particular, we follow the steps below.

Independent labeling. We start the manual classification of
the 171 PRs. Initially, using the negotiated agreement technique
(Mirhosseini and Parnin, 2017), we inspect the first 50 of the PRs
together while the rest were inspected independently. The first
two paper authors were assigned to engage in the manual card
sorting of PRs. Each of the two paper authors read the content of
the PRs and assigned a category without any external influences
from the other authors. To analyze each PR at a granular level,
first, we examined the title and body description of each PR. Fur-
thermore, we inspect the review comments and discussion and
the PR commits. Labels are created and assigned while inspecting
the PRs, and every new label is discussed among coders and, if
necessary, retroactively applied to previously labeled PRs. Note
that the annotators attribute a single type of issue per PR, utilizing
online search for the issue type in public advisories databases,
e.g., the CWE classification (CWE, 2021), to help us classify the
issue according to the CWE specification.

Compute agreement and solve conflicts. Once we conclude
the independent classifications, we computed the Cohen’s Kappa
agreement coefficient (Cohen, 1960) for the two rater’s classifi-
cations. We obtained 79% of agreement, i.e., substantial. We then
held a meeting to discuss the disagreement instances one by one,
so we could reach a consensus on the final labels for each issue.

Build taxonomy. After our final decision about the categories
assigned to all 171 PRs under analysis, we hold a meeting to
build the taxonomy of issue types of security-related review. In
the meeting, we take inputs from the third author to finalize the
taxonomy. During the meeting, we create the abstraction level of
the taxonomy.

Result: Through our manual analysis, we find 14 different types
of security issues identified in the PRs during code review. Table 4
shows the description and the frequency of each type represented
in our dataset, sorted by frequency in descending order.

As seen from Table 4, some types are common across projects,
i.e.,, they exist in a high number of projects. Others are more
frequent within certain projects. Next, we explain some types in
more details.

Common security types across the projects. From Table 4, we
observe that 7 types are common across the projects, i.e., they
exist in 3 or more projects.

For example, we find 23 Race Condition security issues, which
affect three projects in our dataset, namely, Electron, Parse-
Server and Sequelize. A race condition can occur when two
threads try to access the same data, which results in having
wrong data in the threads or causing errors as a result of trying
to use the same resource simultaneously with both threads. A
race condition can compromise the application security when
it causes threads to execute code in unintended ways. In the
studied projects, this can happen in two ways. For example, in the
Sequelize project, this occurs when two simultaneous callbacks
within the JavaScript are racing to execute some functionality. In
the other, and more common method in our dataset, a race con-
dition can occur when threads are created in the C++ layer of the
JavaScript project. This second method is seen most frequently in
the Electron project, since it re-uses a lot of the Chromium code,
which is a C/C++ based project, to render the user-interface (UI).

M. Alfadel, NA. Nagy, D.E. Costa et al.

Table 4

Types of security issues identified during code review and their frequency.

The Journal of Systems & Software 203 (2023) 111752

Type

Description (with example)

Frequency

Projects

Race condition

Occurs when two or more threads can access shared data and they try to change it at
the same time, which may lead to multiple issues, e.g., alter, manipulate, steal data, and
malicious code. An example of race condition in our dataset can be found here (protocol,
2023).

23

3

Access control

A system that does not restrict or incorrectly restricts access to a resource from an
unauthorized actor suffer from Access Control security issue. An example of access
control in our dataset can be found here (Allow read, 2023).

23

ReDOS

A regular expression denial of service (ReDoS) is an attack that produces a denial of
service by providing a regular expression that takes a very long time to evaluate, which
may lead to either slowing down the system or becoming unresponsive. An example of
ReDOS in our dataset can be found here (Fix ReDOS, 2023).

23

XSS

XSS attacks occur when an attacker uses a web application to send malicious code,
generally in the form of a browser side script, to a different end user. An example of XSS
in our dataset can be found here (Changelog, 2023).

22

SQL injection

SQL injection attack consists of insertion or injection of a SQL query via the input data
from the client to the application to spoof identity. An example of SQL Injection in our
dataset can be found here (Adding support, 2023).

14

Documentation

In such cases, developers discuss issues related to enriching the project documentation
for a better and more secure use of the project. An example of documentation in our
dataset can be found here (docs, 2023).

14

Improper authentication

A weakness that allows an attacker to either capture or bypass the authentication
methods that are used by a web application. An example of improper authentication in
our dataset can be found here (Structured, 2023).

13

Sensitive data exposure

Occurs as a result of not adequately protecting a database where information is stored.
An example of sensitive data exposure in our dataset can be found here (Add doc, 2023).

10

Remote code injection

Occurs when an attacker has the ability to run system commands remotely on the
vulnerable application. An example of remote code injection in our dataset can be found
here (fix, 2023).

Overflow

Occurs when the entered data in a buffer overflows its capacity to adjacent memory
location causing the program to crash. An example of overflows in our dataset can be
found here (feat, 2023).

Deadlock

Occurs when the software contains multiple threads or executable segments that are
waiting for each other to release a necessary lock, resulting in deadlock. An example of
deadlock in our dataset can be found here (Update Travis, 2023).

Improper input validation

Occurs the project does not validate the input properties that are required to process the
data safely and correctly. An example of improper input validation in our dataset can be
found here (Update Travis, 2023)

Vulnerable package

A third-party vulnerability contains a vulnerability. An example of vulnerable packages in
our dataset can be found here (fix(postgres), 2023)

DOS

Occurs when an attacker floods the target application with traffic or sending it
information that triggers a crash. An example of DOS in our dataset can be found here
(Add reset, 2023)

An example of a race condition can be found in a CVE* of the
Chromium project, for which the Electron package re-uses the
code for. In this example, multiple audio contexts, using multiple
rendering threads may call the same method that calls free on a
specific memory location. Since this is not thread-safe, multiple
calls of the free function on the same memory space can have
undefined behavior, which could allow an attacker to exploit the
corruption in a heap. According to OWASP,” the implications of
such a vulnerability can range from crashing programs, alter-
ing the execution flow or as severe as allowing the attacker to
execute code, usually with elevated privileges.

Access Control (23) is another security issue type that seems
to be common across the studied projects; we find 23 cases
distributed across 6 projects. The reason for this common security
concern is that most projects have to manage several permission
options, which may result in issues related to Permission and
Access Control. For example, the Strapi project manages various
permissions, and has encountered an issue in this PR (Fix deep,
2021). The proposed PR had vulnerable changes, allowing certain

4 https://www.cve.org/CVERecord?id=CVE-2021-30603.

5 https://owasp.org/www-community/vulnerabilities/Doubly_freeing_
memory.

users to access files beyond their permission scheme, allowing
to register themselves as admins when they should not be able
to Unable to override (2021) and Add optional (2021).

In addition, our manual analysis finds several cases of Sensi-
tive Data Exposure (10) issue, affecting 5 projects. We found that
issues related to Sensitive Data Exposure can range from storing
information in plaintext, logging sensitive information or even
exceptions and error messages (e.g., Messaging API (2021), Add
Connection (2021a) and Merge pull (2021)). For example, in some
cases, maintainers raised the issue that the system was logging
sensitive information that should not be exposed. As an example,
in this PR (Add Connection, 2021a), the session id is used as a
token generated on the server, and stored on the client by means
of a cookie, which is used in later communications to identify
the user. Developers may log the session id to track the user
interactions with the application during a session, however, if an
attacker gets access to live logs, she could use the session id to
impersonate active users.

Cross-site scripting (22) is another common issue, which
is triggered at the client-side when a potential attacker sends
malicious code in the form of a browser side script, e.g., to
hijack user’s account and credentials. In our analysis, we find
that the Cross-site scripting (XSS) type affects three web-based

https://www.cve.org/CVERecord?id=CVE-2021-30603
https://owasp.org/www-community/vulnerabilities/Doubly_freeing_memory
https://owasp.org/www-community/vulnerabilities/Doubly_freeing_memory

M. Alfadel, NA. Nagy, D.E. Costa et al.

projects in our dataset. We find 22 cases of XSS issues where
a lot of HTML components are rendered in the projects. A lot
of these issues arise when the project is failing to properly es-
cape the inserted HTML, which can cause unwanted cross-site
scripting attacks. As a result, many developers spend a lot of
time discussing and trying to figure out the best approach to
escape potentially malicious HTML, such as in the case of this
PR (escapeTextContentForBrowser, 2021).

Other commonly discussed security types include Overflow,
Remote Code Injection and Documentation. In fact, we find the
Documentation (14) cases to be important; they act as the com-
munication medium between package maintainers and applica-
tion developers who use the package. In such cases, package
maintainers discuss inadequate or incomplete documentation of
security critical usages of the package functionality. For example,
in this PR (docs, 2021), a project maintainer states the following:

“.it can lead people to the incorrect assumption that they
should actually run a server in the main process, which will
confuse folks with this comparison. The relationship between
browser/renderer process has fundamentally different security,
performance and communication constraints than a traditional
client-server model that cannot be sufficiently explaining in this
comparison”.

As shown, the case specifies that the proposed documen-
tation fails to properly explain the security constraints of the
system, which can mislead package users. Documentation cases
can mainly occur in PRs in two ways. The first is in changes that
update the documentation, but none of the source code of the
project. This type of documentation either will be published to
the package’s main webpage, in the README, or in some other
form of the project chooses. The second case is changes that
directly touch the source code. This method can affect how the
exposed API, functions and comments are written which could
mislead users of the package into using it insecurely

Other cases are related to attributes misnaming. Such issues
indicate, for example, misnaming a variable to make it seem more
secure than it actually is. An example of this case can be seen in
this PR (Improve soundness, 2021a), where a variable is called
SafeValue, which has security connotations, while it actually is
not necessarily secure (Improve soundness, 2021b). Such a case
can cause users of the package to misuse its API and introduce
vulnerabilities into their own applications.

Frequent security types within specific projects. From Table 4,
we also observe that some types are more frequent in specific
projects. For example, we find 23 ReDOS cases. ReDOS is one
form of denial of service attacks, which occurs by providing a
regular expression that takes long time to process, which causes
a system to crash or take a disproportional amount of time. We
find ReDOS issues affecting only the Marked project, a compiler
for parsing markdown formats. When parsing markdown text,
Marked uses a lot of regular expressions, and as such, is very
prone to creating such issues, as shown in various PRs (fix image,
2021a; Fix GFM, 2021a; enable, 2021). In fact, we observe that
the project maintainers of Marked seem to be employing a static
analysis tool (called vuln-regex-detector davisjam, 2021), integrat-
ing the tool into their CI pipeline, as shown in this PR (test, 2021).
Moreover, the maintainers seem to seek the help of someone
in the team who is regarded as a security expert to help detect
whether certain regular expressions are actually vulnerable. We
observed his involvement in most ReDOS issues (e.g., security
(2021a), Fix GFM (2021a), enable (2021) and fix image (2021b)).
This indicates that such issues of ReDOS are not straightforward
to spot during code review, and may require automated tools as
well as “security experts” to better identify and validate the cases.

The Journal of Systems & Software 203 (2023) 111752

Similarly, we find several cases of SQL injection (14), which
affect two projects only, Sequelize and Strapi. SQL injection
issues generally produce attacks by injecting SQL queries via
the input data to spoof identity. We observe that 10 out of 14
cases are present in Sequelize, which is a powerful package in
the JavaScript, which deals with managing SQL databases, and
hence, it is more susceptible to SQL injection issues. Most of
SQL injection cases that need to be dealt with in our dataset are
cases that require escaping characters from potentially malicious
strings that would inject SQL queries that grant unauthorized
access to the database (6935 remove, 2021; Don’t quote, 2021a).

Issues related to Authentication (13) are mostly present in the
Parse-Server project (6/12 cases), where user authentication is
managed. In such cases where the authentication is not properly
managed, a potential attacker would gain access to sensitive
data or functionality. For example, in this PR (Structured, 2021a),
a reviewer noticed that a public unauthenticated request was
returning information about the server version. This can be risky
as attackers are allowed to send requests to servers to check
if they are running a vulnerable version of the server and take
advantage to perform further exploits.

We find other less frequent types, e.g., Deadlock, DOS, Im-
proper Input Validation, and Vulnerable Packages. An example of
a security issue related to deadlocks can be seen in a PR for the
Sequelize project. We find that the developers are using a PR to
discuss several issues, one of which being a deadlock issue in their
code that interacts with the PostgreSQL database. Since sequelize
is a package that provides object-relational mappings between
JavaScript objects and database objects, it is very likely that a
package user would use this package on a server and expose some
sort of interface (such as a REST API or web page) for a client
to consume. The package user, through no fault of their own,
could accidentally expose this deadlock through their interface
in a reproducible way, and if that occurs, a malicious actor could
easily abuse the application interface to cause deadlocks in their
server-side application. This would inevitably affect the hosting
server(s) ability to continue to function, and ultimately hang and
would render the service unusable, much in the same way a
denial of service attack would.

Finally, note that we compare the types of security issues
identified during code review with the post-release security is-
sues (i.e., advisories) in the Discussion Section. Security advisories
are security vulnerabilities that affect the post-release version of
the projects and have been announced and reported in public
databases.

Our investigation showed 14 types of security issues raised
in code review. Issue type varies from common issues found
across the projects, e.g., Race Condition, Access Control,
XSS, Documentation, and Overflow, to other types more fre-
quently affecting specific projects, e.g., ReDOS, SQL injection,
and Authentication.

3.3. RQ3: How do developers respond to the identified security issues
during code review?

Motivation: As shown in RQ,, various types of security-related is-
sues are brought up during code review, however, how the issues
are tackled, if at all, is crucial to understand the effectiveness of
the code reviewing process. Therefore, in this RQ, we investigate
how developers respond to the identified security issues and
the mitigation strategies employed. Doing so is important to

6 https://github.com/sequelize/sequelize/pull/6443.

https://github.com/sequelize/sequelize/pull/6443

M. Alfadel, NA. Nagy, D.E. Costa et al.

Table 5

The Journal of Systems & Software 203 (2023) 111752

Response themes for handling the 171 identified security issues.

Response theme

Description

Total (%)

Fixed

The security issue is raised during code review and evidence for a related fix
is observed.

79 (46.19%)

No threat

Project maintainers come to a conclusion that the security issue poses no real
threats to the project.

49 (28.65%)

PR rejected

The raised security issue caused the PR to be rejected by project maintainers.

15 (8.77%)

Not fixed

Project maintainers opted not to fix the raised security issue, often due to
very complex technical difficulties.

14 (8.18%)

No response The security issue is raised during code review, but no discussion and changes 8 (4.67%)
are made to reflect on these concerns.
Not fixed and discuss Project maintainers discuss a security issue that is not directly relevant to the 6 (3.54%)

general issue

reviewed PR but rather a general security concern to the project.

motivate improvements of the code review process, with the aim
of increasing its effectiveness.

Approach: To find out how developers respond to the identified
security issues in our dataset, we manually inspect review com-
ments associated with the 171 PRs in the dataset. In particular,
we examine whether the security issue is resolved in a way that
increases the overall security of the related project, and how the
issue was tackled and mitigated during the discussion. Similarly
to RQ,, two authors independently classify the responses using
an open card-sort method (Fincher and Tenenberg, 2005), where
labels are created during the labeling process, by looking through
the discussions, code changes and commit history that occurred
through the code review process. For this manual labeling, a high
level of agreement is reported with Cohen’s kappa coefficient of
+0.93. Once again, when different labels were assigned to the
same PR, the annotators discuss them to reach a consensus.

Result: Table 5 presents the themes of the responses to the issues
raised in the 171 PRs, identified by our manual analysis. Below,
we provide more details about each response theme.

Fixed (46.19% of cases). This is the most common way of
responding to the identified security issues. In such cases, we
find that the security concern was discovered during code review
in addition to an evidence for a related fix. In most cases, we
observe that the issue is fixed, and the PR is merged (e.g., Add
Connection (2021b)). In other cases, we observe that the security
issue is fixed, but the code is flawed for some other non-security
reason, which led the PR to be closed (e.g., Roles (2021)). In a few
cases (e.g., Don’t quote (2021b)), we observe that the reviewers
suggest to open a new PR to properly design the solution that
tackles the raised security issue. An example of a fix is given
in this PR (Structured, 2021a). In this example, the maintainers
found an authentication issue where a potential attacker could
have access to a public unauthenticated request, as stated:

“... Returning information about the server version on a public
unauthenticated request makes it really easy to develop bots
that check for a version of Parse Server that is vulnerable to
an attack, lowering the cost of effort for a random attacker to
locate vulnerable servers”.

The same maintainer also suggests a solution for the issue:

“... If the Health Check is going to return structured data, I think
that’s a feature that should be possible to disable for security
hardening. I'd prefer to see the health check do more - but still
just return OK. Specifically, it would be nice if it did a simple
round-trip to the database that does nothing but confirm the
database server is up...”

Other maintainers agreed on the relevance of the issue and the
suggested fix as well. Hence, the issue was fixed by removing the
related information of the version in the JSON response, as shown
in this commit (Structured, 2021b).

No Threat (28.65% of cases). Of the total number of the
analyzed security issues, we observe that 28.65% of the cases do
not impact the corresponding part in the project. In such cases,
project maintainers did not reach a consensus on the identified
security issue. We observe that a reviewer pointed out a security
issue, but was effectively deemed by other reviewers and/or by
the contributor that it was actually not a security concern, i.e., the
identified issue was not a real threat to the project. For example,
as shown in this PR (Protected, 2021), a reviewer discussed some
flaws related to the design of the permission feature and how it
works. However, after the discussion, the reviewers agreed that
it did not seem to be of any security concern. One maintainer
stated:

“... the pattern of code was actually widely used in the project
and known to not have security concerns”.

In other examples where the raised issue is not considered
as harmful (security, 2021b), project maintainers find that the
issue cannot be triggered accidentally in a normal context, i.e., the
package users should know how to use the functionality in a
secure manner:

“.we should educate our dependents on the safe way
to deal with parsing user input. (i.e. web worker/vm.
runinNewContext)”.

In other cases, project maintainers find that the identified
security issue has no direct impact on the project. For example, in
this PR (Update, 2021) that concerns about a vulnerable depen-
dency, the vulnerability does not affect the end users, since the
dependency is solely used as a development dependency:

“... for users who are using marked, they do not see (and are
not affected) by dev dependency vulnerabilities”.

PR Rejected (8.77% of cases). In 15 (8.77%) PRs, the raised
security issues caused the PR to be rejected by the respective
project maintainers. For example, in those PRs (e.g., Feature
(2021), Add information (2021) and Fix deep Me (2021)), the
proposed changes in the PR are vulnerable, and not easy to fix.
Given that the proposed changes in the PR are discussed to be
lower on the priority list, the team decided to close the PR to
avoid the raised security concern. In this example Fix deep Me
(2021), the maintainer stated:

M. Alfadel, NA. Nagy, D.E. Costa et al.

“Closing this PR because of security issue... With this, we can
access to all the users base of a group”.

Not Fixed (8.18% of cases). We observe that in 14 PRs, the
project maintainers opted for not fixing the raised security issue,
often due to very complex technical difficulties. For example,
in this PR (Add CounterCache, 2021), the project maintainers
clearly discuss a race condition in the code. However, through
our manual inspection, we observe no action was taken in the
PR to fix the race condition since the maintainers do not seem
to be able to find where the issue is coming from or do not seem
willing to invest time into it at this point of the project, as stated:

“..imperfection is to be expected when there is only been one
iteration :)"

Another example (e.g., Changelog (2021)) is where project
maintainers decided not to fix the issue in the current project
release, as it would cause a breaking change and the fix could
require significant code changes that replace the entire underly-
ing requirements of the PR. In this case, the project maintainers
prioritize respecting the release deadlines over fixing the security
issue.

In some other cases, the project maintainers are offloading the
responsibility of security to its users (the dependent applications).
In this example Block non (2021), the maintainers stated:

“..there is a responsibility up to the developers of Electron
projects to ensure the content they are pulling in is safe and
trusted”. And that “Electron intentionally breaks security and
the sandbox to make applications possible”.

This indicates that in certain cases, the project maintainers
need to weigh the pros and cons of securing their project, as there
is a tradeoff between usability for the project users and security
of the project itself.

No Response (4.67% of cases). The cases under this category
are concerns that are raised by maintainers but were completely
ignored within the context of the PR. For example, in these
PRs (Fix GFM, 2021b; Migrate, 2021), we observe that a specific
reviewer raised an issue related to ReDOS, but we could not find
any evidence of a discussion or any response back within the
comments of the PR or any of the commits and discussions that
referenced the related PR. Similarly, in this example Fix GFM
(2021b), one maintainer raised a potential issue related to ReDOS
issue, and asked another maintainer to validate it. However, we
did not observe any response back from other maintainers. In
other cases, we observe that the security issue was not raised
early enough, i.e., the issue was identified only after the PR’s
decision was already taken (closed/merged). As an example, in
this PR (fix(redshift), 2021), we find that, after merging the PR, a
developer adds a comment concerning a potential SQL injection.
In such cases, we find no evidence of discussing or addressing the
security issue after being raised.

Not Fixed and Discuss General Issue (3.54% of cases). In
such cases, reviewers discuss issues that are not directly relevant
to the reviewed PR, i.e, they discuss general issues that come
along the discussion of other related issues. This can be some
improvements for security-features or potential approaches to fix
security issues. In such cases, no actions is taken in the PR since
the discussion is not specific to the PR changes. For example,
in this PR (Escape component, 2021), the project maintainers
discuss various ideas and approaches to escaping characters to
prevent potential XSS issues, though no actual XSS issue is raised.
Throughout this discussion, they identify potential security issues
in each others’ ideas and refine them to come up with an op-
timal solution. This helps project maintainers plan out a secure

10

The Journal of Systems & Software 203 (2023) 111752

approach to prevent a potential vulnerability from an un-
discussed plan. As shown in the following quote:

“..I'd be curious to see if an indexOf(’) |== —1 check be-
fore escaping would help perf in the common case. Since the
common case is no dot. We could also escape to a format that
does not need re-escaping when it goes into the DOM attribute.
Since we already have one escape pass, we can utilize that
for both. Might be dangerous though. Easy to open up XSS
vulnerabilities”.

The author is relating the content of a PR to some future work
or feature, and discussing their security concerns for the possible
approaches. This provides an entryway for a discussion to further
discuss how they should handle these future works, before they
begin tackling them.

The majority (54.96%) of the identified security issues during
code review are fixed and mitigated. However, many of the
issues seem to be considered as having low threats to the
projects (28.65%). In a few cases, the project maintainers do
not fix the issues (8.18%) or even respond to them (4.67%).
Interestingly, some of the issues are not directly related to
the reviewed PRs, but are still discussed during code review
(3.54%).

4. Discussion & implications

In this section, we discuss our results further. First, we per-
form an analysis of code reviews in projects that are not in the
advisories dataset (4.1). Then, we present a discussion on the
comparison of security issues identified during code review to
the post-release security issues (advisories) that are only identi-
fied after the project release (4.2). We also perform an analysis
on the usage of tools as a solution to identifying security is-
sues during code review (4.3). Finally, we provide insights about
how our findings can improve the practice for researchers and
practitioners (4.4).

4.1. Security code review for non-advisory projects

To assess the generalizability of our results to more typical
projects that npm users would download, we perform the anal-
ysis of RQ; on a new dataset of 10 projects. These projects are
selected based on our Popularity and Recent Activity criteria (in
Section 2.1), but do not have any vulnerabilities reported in the
advisories. This is to eliminate the potential biases associated
with studying some of the most vulnerable projects.

We begin our analysis by searching for the most popular
packages (using the number of downloads). We use the number
of downloads to rank the projects by popularity, since the more
popular packages would be more representative of a typical pack-
age that a npm user would download and use. Thus, we use the
npm API to collect the more up-to-date data on the number of
downloads for all the packages in the dataset. From this newly
acquired data, we are able to select the top 10 most popular
projects, whilst filtering out projects that do not meet our activity
requirements or contain npm advisories. Once selected, we collect
all comments from the pull requests on their GitHub projects.
From there, we are able to identify which pull requests contain
comments with security keywords, and we begin running our
analysis of these pull requests to compare and contrast with the
advisory projects. We follow the same approach applied in RQ;
to conduct our analysis.

M. Alfadel, NA. Nagy, D.E. Costa et al.

The Journal of Systems & Software 203 (2023) 111752

Table 6
Distribution of security-related issues at different granularities, per project (non-advisory projects).

Granularity Project # Total # Security-Related %
Babel 15,463 12 0.077

DefinitelyTyped 6,288 22 0.34

Regenerator 117 0 0

DomUtils 1,202 0 0

PRs Entities 290 0 0
Electron-to-Chromium 38 0 0

TypeScript 1,005 4 0.39

RxJS 374 3 0.80

Core-]JS 54,154 1 0.002

caniuse-lite 3,740 0 0

Babel 28,223 23 0.08

DefinitelyTyped 61,698 47 0.07

Regenerator 71 0 0

DomUtils 33 0 0

Files Entities _ 42 0 0
Electron-to-Chromium 22 0 0

TypeScript 65,708 4 0.006

RxJS 1,330 2 0.15

Core-JS 3,625 1 0.03

caniuse-lite 843 0 0

Babel 134 14 10.45

DefinitelyTyped 302 24 7.95

Regenerator 0 0 0

DomUtils 0 0 0

. . Entities 0 0 0

Comments in Security-PRs Electron-to-Chromium 0 0 0
TypeScript 22 5 22.73

RXJS 42 4 9.52

Core-JS 11 6 54.54

caniuse-lite 0 0 0

Table 6 shows the distribution of the PRs identified in the
studied projects at different levels of granularity. Concretely, the
projects Babel and DefinitelyTyped have the largest occurrence
of security issues raised during code review, i.e., 22, 12 respec-
tively, while there are only 4, 2, and 1 PRs with raised security
concerns in the remaining three projects. Overall, the rate of PRs
with security-related reviews is quite low, showing that only a
minority of PRs raise any concerns about security. Consequently,
the identified security issues are concentrated on a small fraction
of the projects’ files (< 1%). Although the PRs with security-related
reviews seem rare at both the PR and file granularity levels, once
a maintainer expresses a security concern on the PR, maintainers
discuss it at length in the PRs. Between 7.95%-54.54% of all com-
ments in the 41 PRs are related specifically to the security-related
concern.

Overall, both advisory and non-advisory projects follow a sim-
ilar trend where security issues are raised in a small fraction of
PRs, affecting also a small fraction of project files. Also, raised
security issues are discussed at length by project maintainers in
the PRs.

4.2. Comparison with advisories dataset

Code review identifies security issues before these issues are
merged in the codebase and go to production. However, security
issues uncaught by code review may later become known vulner-
abilities in the projects. To better understand the effectiveness
and limitations of code review, we compare issues identified
during code review to post-release security vulnerabilities (ad-
visories) that have been reported after the project release pro-
duction. Such comparison will help us understand whether there
are certain types of issues that code review can be effectively
employed to identify.

To that aim, we resort to using the security advisories database
provided by npm (npm, 2021). We collect all npm security advi-
sories of the studied projects in the same timeline of the collected

11

security-related PRs, i.e., we collect all advisories that have their
publication date before August, 2021.

We report the results of our comparison by cross-referencing
the security types identified during a code review with the types
of advisories that affect the projects in our dataset. We manually
check whether each one of the 14 types identified during code
review (RQ;) exist in the advisories dataset. Table 7 shows the
types identified in our study, and whether they are mentioned
in the advisories dataset. From the table, we can observe that
four types in our study are not mentioned by the advisories
dataset, namely Race Condition, Access Control, Documentation, and
Deadlock.

Based on our observations, the nature of the types that
were more commonly found in code review requires in-depth
knowledge of the project domain and implementation
specifics. For example, issues related to Race Condition and
Deadlock stress this point as their identification require an in-
depth understanding of the problematic code, how the concerned
threads interact to deliver the desired functionality and only then
can one begin to look for edge cases in which a race condition or
a deadlock may arise.

Similarly, our observations seemed to hint that Access Control
issues are difficult to spot without experience working with the
project. In the case of Access Control (e.g., in this PR Add rate,
2021), we observe that in order to understand whether certain
resources can be exposed or not, a deep understanding of the
project users’ requirements is necessary to understand whether
those resources are sensitive and need special access to use. In
fact, automated tools (e.g., static and dynamic testing tools) can
help to detect the absence of access control in a system (Aloraini
et al,, 2019; A5:2017, 2021), but cannot determine whether it
functions properly when in use. Contrary to this, code reviewers
can take the time during the review to analyze whether the
given changes are functioning as expected, which can help them
identify whether the given functionality has an access control
issue. Furthermore, we check if the security issue types (i.e., ac-
cess control and race conditions) affect any npm package in a

M. Alfadel, NA. Nagy, D.E. Costa et al.

Table 7

Cross-reference the types of security issues identified during code review with
advisories dataset for the studied projects. The values in parentheses represent
the number of affected projects.

Types in code review Mentioned in advisories

Race condition (3) -
v (4)

ReDOS (1)

Access control (6) -
XSS (3) v (3)
SQL injection (2) v (1)
Documentation (5) -
Improper authentication (2) v (1)
Sensitive data exposure (5) v (2)
Remote code injection (4) v (3)
Overflow (5) v (1)
Deadlock (2) -
Improper input validation (1) v (2)
Vulnerable package (2) v (3)
DOS (1) v (2)

recent version of the advisories dataset (collected from GitHub
Advisories7), i.e., we do not limit the search to the advisories of
the studied 10 projects in our dataset. We find 20 projects in the
npm advisories where the project is affected by issues related to
access control vulnerabilities.

Also, we check if the low number of issues related to access
control is specific to JS. We perform similar analysis on other
common package managers (i.e., Maven (Java) and PyPi (Python)).
We find that the number of cases is 78 advisories (for Maven)
and 40 advisories (for PyPi). Such results indicate that the number
of access-control issues in package ecosystems is generally low,
though this number is relatively lower in]JS packages compared
to other package managers like PyPi and Maven. In fact, prior
work (e.g., Rennhard et al. (2022)) showed that detecting “logical
vulnerabilities” such as access control is much more difficult
than “technical vulnerabilities” such as XSS and SQL injection,
as existing vulnerability scanners are not able to assess whether
the access control rules are enforced correctly unless it has ad-
ditional information about how the web application should work
correctly. We believe this is one possible explanation behind our
observation where we also find that the number of identified
access control issues during code review (23 cases) is higher than
the total number of access control advisories (20 cases), indicat-
ing that manual methods (e.g., manual source code analysis) are
required to verify and identify such issues.

We perform a similar analysis for race condition issues. We
find that the npm advisories contain a total of 4 cases, while there
are 18 cases in Maven and 11 cases in PyPi. Similar to access
control cases, we believe race condition issues are logical security
issues where vulnerability scanners are not well-suited to detect
them easily. Through our manual analysis of race condition cases,
we observe that developers had a lengthy discussion to decide on
the validity of the issue. In many cases, no action was taken in the
PR to fix the race condition since the maintainers do not seem to
be able to find where the issue is coming from or do not seem
willing to invest time into it.

Issues classified as the “Documentation” type refer to security
constraints on the project usage that are not properly commu-
nicated. Clients (i.e., project users) rely on documentation to
understand how to properly use a project or its API. Any missing
or unclear documentation may mislead these clients to use the
project in unsafe manners, potentially leading to a vulnerability
unbeknownst to them. Hence, properly written Documentation
is extremely important due to the reliance from project users.
Yet, such issues are not really exploitable vulnerabilities that may

7 https://github.com/advisories.

12

The Journal of Systems & Software 203 (2023) 111752

affect the project itself, and hence, the “Documentation” category
is not present in the advisories dataset, despite being a major
security concern for project users.

While some types of security issues are frequently identified
through code reviews, we find that some other types are more
frequently detected in the advisories dataset. For example, as seen
in Table 7, we find that code reviews identified ReDOS in one
project only (Marked). However, the advisories dataset mentions
four projects (including the Marked project) affected by ReDOS,
namely, Moment, Uglify-js, and Sequelize. We observe in
RQ, that the project maintainers of Marked integrate a static
analysis tool in the project pipeline and periodically invite a
security expert to validate and fix specific issues like the ReDOS
type, this was not observed for the 3 other projects. Such results
may indicate that some other types of issues like ReDOS are easier
to detect by means of tools or specialists.

Interestingly, we find that such observations are inline with a
recent report by IBM company. According to IBM (What is threat
hunting, 2021), around 80% of cyber-attacks could be handled
by automated security tools. However, the remaining 20% of
threats are more likely to include sophisticated threats and cause
significant damage as on average they remain undetected for
280 days. The report also highlights that such bypassed threats
require professionals and security analysts who understand the
operations well, to be able to search, log, monitor and fix threats
before they can cause serious problems.

In the case of Race Conditions, Deadlocks, or Access Control
issues, this is inline with our assumption that project maintainers,
who understand the underlying operations of the project, are
better suited to find these types of issues, as they are well inter-
connected with the project functionality. This may help explain
why Race Conditions, Deadlocks, and Access Control issues were
only found by project maintainers during code review and not
through the advisories. If Race Conditions, Deadlocks and Access
Control issues require a deep understanding of the project to
identify and mitigate, then it is less likely that people outside of
the project maintainers would be able to find and report these
types of vulnerabilities to the advisories.

Finally, we manually examine categories of security reports in
the advisories dataset and count the frequency of each one. While
our advisories dataset includes more than 600 vulnerabilities,
we find that 78.27% of them are concentrated in 10 categories.
Table 8 shows these 10 categories and the frequency of each
one. Of the top 10 categories, we find 8 categories that were
also identified in code reviews. Two categories (Prototype Pollu-
tion and Arbitrary Code Execution) were not identified in code
reviews of the studied projects. Such results indicate that code
reviews can identify common security advisories (e.g., XSS, SQL
Injection, Authentication, etc.). However, there is still plenty of
room for improvement. We observe that code reviews do not
identify other common categories in advisories (e.g., Prototype
Pollution). For example, from Table 8, we found that Prototype
Pollution is the second most common category in the advisories,
with 69 vulnerabilities affecting packages from different domains,
including Parse-Serve and Node-Red packages in our dataset.
With prototype pollution, an attacker can control the default
values of an object’s properties. Recent research has proposed
techniques to detect prototype pollution vulnerability. For exam-
ple, Li et al. (2021) proposed a static taint analysis tool to detect
prototype pollution vulnerabilities in npm packages. They found
61 previously-unknown vulnerabilities.

Therefore, our results suggest that researchers should direct
their efforts to improve practices and tools that tackle such vul-
nerability types during code review. This would significantly ben-
efit a wide range of software projects to review their code against
these categories. Moreover, package maintainers are encouraged
to widely adopt such research tools in their code review process
to constantly identify their vulnerabilities and fix them as soon
as possible.

https://github.com/advisories

M. Alfadel, NA. Nagy, D.E. Costa et al.

Table 8

Ranking of the top 10 vulnerability categories in the advisories dataset.
Category Frequency
XSS 157
Prototype pollution 69
ReDoS 65
Command injection 64
Denial of service 59
SQL injection 28
Sensitive data exposure 22
Remote code execution 19
Arbitrary code execution 14
Improper authentication 11

4.3. Tool usage for security code review

Our results (RQ;) show that in some cases, project maintainers
integrate automated tools in the pipeline of the project devel-
opment cycle. For example, we observed that the maintainers
of the Marked project integrate a static analysis tool into their
project’s continuous integration pipeline. To report on the extent
to which it was possible to detect the usage of tools as a solution
to identifying security vulnerabilities, we manually investigate
the discussion comments of the 171 security-related PRs and
their relevant issues in search of any indicators or references of
a security tool used in the studied project. We find that several
projects adopt a variety of tools to protect the project from po-
tential security issues. Our investigation leads us to the following
observations:

e The project Marked uses a plugin called vuln-regex-detector
(davisjam, 2021), which is a security tool that scans for
ReDoS issues in the project. As seen in this PR,® the project
configures the tool by defining it in the package.json.

e Another project (the Moment package) uses a tool called
Debricked (GitHub, 2023), which is a security tool that anal-
yses the latest commits and PRs of the project for known
vulnerabilities. As shown in this PR, the project integrated
some changes to fix vulnerabilities affecting the project.

e Snyk tool (GitHub integration, 2023) was also used by sev-
eral projects (e.g., Strapi and Parse-Server) to keep depen-
dencies up to date in the projects. For example, in the
project Parse-Server, Snyk has created this PRV to fix one
or more vulnerable dependencies of the project. Another
example is shown in the project Strapi.!!

e Sonatype (IQ, 2023) is another tool adopted by several
projects (e.g., Uglify]S and Sequelize). For example, as shown
here,'© Sonatype raises a vulnerability in the project Ugli-
fy]S. Other relevant examples can also be seen in these
example.1314

e Other observed tools include the NSP tool (nodesecurity,
2023). Project repositories rely on it to check if the pack-
age has been reported for security issues. For example, the
project Marked discussed that the NSP security check tool
reported that the package has a serious “Regular Expression
Denial of Service” problem.!”

https://github.com/markedjs/marked/pull/1220.
https://github.com/suculent/thinx-device-api/pull/400.
https://github.com/parse-community/parse-server/pull/7825.
https://github.com/strapi/strapi/pull/12314.

/

/

10 /

/
https://github.com/mishoo/Uglify]S/issues/5721.

/

/

/

11
12
13
14
15

https://github.com/sequelize/sequelize/issues/15172.
https://github.com/mishoo/Uglify]S/issues/5699.
https://github.com/markedjs/marked/issues/947.

13

The Journal of Systems & Software 203 (2023) 111752

Finally, note that it is possible that the list of observations
above is not exhaustive. Still, we believe that adopting such
tools can lead to identifying a wide range of security vulnera-
bilities. For example, Davis et al. (2018) studied the impact of
ReDoS vulnerabilities in npm and PyPi. They found (using the tool
vuln-regex-detector) that thousands of regexes are affecting over
10,000 modules across diverse application domains.

4.4, Implications

In this section, we provide some implications to practitioners
and researchers.

Certain security issues are more commonly identified through
code reviews. Our findings showed that a variety of security
issues are identified during code review. However, we also found
that certain types of security issues, e.g., issues relating to Race
Conditions, Access Controls issues existed in the studied projects
which were not frequently reported in the advisories dataset.
Through our manual analysis (RQ, & Section 4), we discussed that
dealing with such security issues is difficult and hard to locate.
For example, in the case of Race Conditions and Deadlocks, the
reason due to these issues being difficult to identify and fix is
that they require a deep understanding of how the project uses
multi-threading and what can cause Race Conditions. In the case
of security issues related to Access Control, this is due to the
need for a solid understanding of the project users’ requirements,
which is necessary to understand whether the accessed resources
are sensitive and need special access to use. That said, our results
show that code review is considered a critical approach for
identifying specific security issues that require logical analysis of
the issue.

Integrating automated tools in the project development cycle
can help developers to identify critical vulnerabilities during
code review. Our results (RQ;) show that, in some cases, project
maintainers integrate automated tools in the pipeline of the
project development cycle. For example, we observed that the
maintainers of the Marked project integrate a static analysis tool
into their project’s continuous integration pipeline (called vuln-
regex-detector davisjam, 2021), which aided in the identification
of most ReDOS security issues in the project. Also, through our
manual analysis, we observed that, in several cases (e.g., nested
parentheses (2021) and added data (2021)), the project enable
tools for dependency management to upgrade outdated and vul-
nerable dependencies. For instance, in this PR (Add snyk, 2021)
of the project Marked, several outdated dependencies were au-
tomatically updated and fixed by the Snyk tool. These results
indicate that it is of great help for projects to use automated
tools to target security issues that could affect the projects.
Moreover, further research should explore different tools that can
be integrated in the development cycle of projects to target secu-
rity concerns. One particular example is CodeQL (github/codeq],
2021), which is a code analysis platform for finding zero-days
and critical vulnerabilities in pull requests. While such tools
have been proposed for a while, there is little known about
the effectiveness of integrating such tools in software projects.
Future research should examine the efficiency and effectiveness
of such code review tools across projects for different types of
security concerns. Such research is important to increase devel-
opers awareness to code review tools that can be employed in
the project development cycle to help identify security concerns
in their projects.

Overlooked security issues should be documented and re-
ported to project users in an easily accessible way (i.e., project

https://github.com/markedjs/marked/pull/1220
https://github.com/suculent/thinx-device-api/pull/400
https://github.com/parse-community/parse-server/pull/7825
https://github.com/strapi/strapi/pull/12314
https://github.com/mishoo/UglifyJS/issues/5721
https://github.com/sequelize/sequelize/issues/15172
https://github.com/mishoo/UglifyJS/issues/5699
https://github.com/markedjs/marked/issues/947

M. Alfadel, NA. Nagy, D.E. Costa et al.

READMEs, package descriptions, or package documentation).
Although our findings show that identified security issues are
frequently fixed, we found a non-negligible share (13%) of is-
sues identified during code review end up not being fixed or
are ignored by maintainers (see RQ3). We observed in several
cases that such issues generally take great effort to mitigate
or may contradict the goal of the project. In some cases, the
maintainers state that the responsibility of the security issue
is on the user to mitigate. However, in all of these cases, the
project maintainers do not seem to come out of their discussions
within their PRs with anything actionable that could help better
advise users of such security issues This can impact the project
users as proliferate to the project users unbeknownst to them.
Therefore, we recommend to all project maintainers to document
all potential security issues that could come about by using their
project in a way that is easy to understand and easy to access
by the users of their projects. In addition, project users cannot
be expected to sift through the project history to gain a better
understanding of what is their responsibility for security, and
to understand what is not being handled by the project. Having
some easily accessible documentation, such as in the README of
a project, in the package description (like on the npm registry)
or on the project website, can help give a high-level overview to
prospective users of what they need to do to handle and mitigate
such security concerns in their own applications.

Security issues raised in the studied PRs are raised on a small
fraction of project files. Our results show that security issues
identified during code review of the studied projects are very
localized, only appearing in a small fraction of project PRs and
files (see RQq). This indicates that project maintainers need to
concentrate on these parts and pay more attention to them during
security code review. Therefore, one way to support the code
review process is to build tools that rank files based on their
security sensitivity. For instance, files that have had security
issues identified in them can be flagged by the tool as security
sensitive. Such tools can help project maintainers for prioritizing
code review for security issues, e.g., a PR that touches a file that
has been flagged as security sensitive before may require the
review of a security code expert.

5. Related work

There is plethora of work studying the effect of the code
review process in finding defects. Thongtanunam et al. found
that developers are often most concerned about documenta-
tion and structure to enhance evolvability, and fix functional
issues (Thongtanunam et al.,, 2015). Beller et al. revealed that
most changes of open-source systems in code review are in-
deed related to the functionality aspect (Beller et al., 2014). The
study by Bacchelli and Bird (2013) showed that most changes of
open-source systems in code review are also related to function-
ality. Mdntyld and Lassenius (2008) reported similar outcomes
for other industrial and academic projects. McIntosh et al. (2014,
2016) examined the impact of code review coverage and par-
ticipation on the code review quality. They found that projects
with low code review coverage and participation are estimated
to produce more post-release defects, meaning that poor code
review negatively impacts the software quality. Our study found
that code reviews that had found a security defect are associated
with a high proportion of comments related to the raised issue
(RQ), indicating the extra effort and participation that might
have been required to find and fix these defects.

Other studies focused on factors that improve the code review
quality. For example, Kononenko et al. (2018) empirically exam-
ined what factors influence the PR review quality and outcome

14

The Journal of Systems & Software 203 (2023) 111752

in the Active Merchant project. They found that the quality of
a PR is strongly associated with the quality of its description,
its complexity and revertability, while the quality of the review
process is linked to the feedback quality, tests quality, and the
discussion among developers. Bernardo et al. (2018) examined
the impact of adopting CI on the time to integrate PRs. They
found that the time to merge PRs increased after adopting CI.
In the context of our study, we observed some projects adopting
and integrating static analysis tools in the CI pipeline to help in
identifying specific security issues (e.g., ReDOS) and other general
issues related to fixing the code style and structure, which had
not been shown previously by the other aforementioned studies.

Other studies examined how code review is practiced in differ-
ent contexts (e.g., test code Spadini et al., 2019, 2018, build spec-
ifications Nejati et al., 2023). For example, Spadini et al. (2019)
examined the impact of a code review practice called ‘Test-
Driven Code Review’ (TDR), where a reviewer inspects patches by
examining the changed test code before the changed production
code. Their experiments show that developers adopting TDR find
more defects than ones found through examining production
code. Spadini et al. (2018) also examined how code review is used
for ensuring the quality of test code. They find that developers
tend to discuss test files significantly less than production files.
The paper recommends that the project should set aside sufficient
time for reviewing test files. In fact, our study is in-line with
such results; we observed that in some cases the test code could
help reviewers to identify several security issues (e.g., as seen in
this PR Add CounterCache, 2021). Alami et al. (2019) examined
the reasons for the success of code review practice, and found
that human and social aspects are also key to drive the success.
For example, the contributor’s passion allows to adhere to code
review best practices, and cope with the feedback by learning
from rejections and negative comments.

Other most relevant work to our study focuses on security
code review (Bacchelli and Bird, 2013; di Biase et al., 2016; Paul
et al,, 2021; Bosu, 2014). For example, Bacchelli and Bird (2013)
observed (based on interviews and surveys) that code review is
mainly motivated for finding defects and formatting issues while
missing the fact that there were security issues. di Biase et al.
(2016) analyzed the Chromium system to understand the factors
that may lead to find security issues during code review, and
found, for example, that reviews conducted by more than 2 re-
viewers are being more successful at finding security issues. Also,
they found that reviewers tend to find domain-specific security
issues (e.g., Cross-Site Scripting XSS) more than language-specific
issues (e.g., C++ issues). Our findings show that both of such types
(e.g., Race Conditions issues related to C++, overflow issues, and
XSS) could be caught during code review of the studied projects.

Several studies focused on analyzing the impact of security
vulnerabilities in package ecosystems (Zerouali et al., 2022; Al-
fadel et al., 2021a, 2022, 2023, 2022). For example, the study
by Zerouali et al. (2022) performs a time-based analysis of vul-
nerabilities reported in the Snyk database. The vulnerabilities in
this database are issues found after releasing package versions
to the public. This is in steep contrast with the vulnerabilities
that we analyze (i.e., found during code review), which can be
found and fixed before releasing to the public. We also compare
vulnerabilities found during code review to those reported in the
advisories dataset (Section 4.2). The aforementioned difference
has two main implications. The first implication is that it gives
package users an idea of what types of vulnerabilities npm project
maintainers are able to identify and fix preemptively. This helps
package users better understand the care that is being put by npm
project maintainers into the dependencies that these package
users are integrating into their own software projects. For exam-
ple, the data in Table 3, provides an overview of the prevalence

M. Alfadel, NA. Nagy, D.E. Costa et al.

of security-related code reviews in the analyzed systems and
motivates research that can bring more awareness about security
issues during code reviews. Also, the categories we analyze can
serve as a high-level checklist for a security-focused code review.
The second implication is that the methodology for finding the
vulnerabilities is different. In the Snyk database and npm advi-
sories, there is no clear method that is being used for finding
these vulnerabilities. They could be found through bug bounties,
through an external contributor who is perusing the code base,
or by any other means imaginable. However, this does not give a
good idea of how code review is aiding in bettering the security
of their packages, if at all.

The study by Paul et al. (2021) analyzed the Chromium OS
project. The main goal of the study is to build a regression model
on the Chromium project to identify factors that differentiate
code reviews with successfully identified vulnerabilities from
reviews that missed vulnerabilities. They found, for example,
that the number of directories under review correlates negatively
with identifying vulnerabilities. Bosu (2014) performed an em-
pirical study, where they analyzed more than 400 vulnerable
code changes with the aim to identify their characteristics. They
found that the changes by less experienced contributors were
significantly more likely to introduce vulnerabilities. Also, they
found that new files are less likely to contain vulnerabilities
compared to frequently modified files. In our study, we find that
the identified security issues are concentrated on a small fraction
of the project files (RQ1). This should encourage researchers in
the future to understand the nature of such files that frequently
contain security issues, which would help practitioners and de-
velopers better improve the process of identifying security issues
in code review. Recently, Braz and Bacchelli (2022) conducted
interviews with 10 professional developers and survey of 182
practitioners to understand (1) what is the current developer’s
perspective on ensuring software security during code review?
(2) to what extent do companies/projects support security as-
sessment during code review? They found that developers do
not have security in mind when describing their code review
practices, thus suggesting that security is not one of their main
priorities when reviewing code. This result partially supports our
findings where we find that security issues identified during code
review are raised in a small fraction of PRs, affecting also a small
fraction of project files. Our study complements the previous
works since, we specifically focus on JavaScript projects that have
been published in the npm ecosystem, analyzing security issues
identified during code review. We also add to previous work by
qualitatively studying how developers discuss the raised security
issues and tackle them during the review phase (RQ3). Moreover,
we present a novel discussion on the comparison of security
issues identified during code review to the post-release secu-
rity issues (advisories). Our study aims to help the community
better understand the types of security issues discovered during
code review in order to pay attention to them in the future,
and understand the mitigation strategies employed by project
maintainers to tackle the issues. Our results highlight several
observations that aim to increase the awareness of practitioners
and researchers to the role of code review in relation to security.

6. Threats to validity

In this section, we discuss the threats to validity of our study.
Internal validity concerns factors that might affect the casual
relationship and experimental bias. In RQ2 and RQ3, we con-
ducted major manual process to extract the required information
for analyzing the security issues in the PRs. Like any human
activity, our manual process is subject to the author bias. To
mitigate this, two authors independently analyze the PRs using

15

The Journal of Systems & Software 203 (2023) 111752

an open card-sort method. Moreover, we report a high-level of
agreement which indicates that our results are more likely to
hold. Additionally, both annotators meet and discuss any conflicts
to reach a consensus. Finally, at an early stage of the process,
we invite two annotators (who are authors of this paper) to
independently investigate a sample of the PRs (i.e., PRs in the first
round), and applied their feedback in later rounds. This gives us
a high confidence of the data used in our analysis.

Another internal threat to validity is related to our manual
process to quantify the number of unique files that contain the
identified security issue per PR. We use our best judgment during
the manual inspection. For example, if a security issue is raised in
a comment on a specific snippet of code, then the file associated
with that code snippet would be considered the unique file.
Another example would be, if a security issue is raised during
the discussion of the design of the changes made in the PR, then
all the source code files would be considered. A final example
would be if developers are talking about package dependencies,
then we would include all files touched that relate to package
dependencies. Generally, this is a straightforward process, but in
some edge cases, it also requires going a little bit deeper, and
hence, we inspect the code to understand the context.

Our keyword-based technique to identify security-related PRs
could be another limitation. We may miss security issues in the
PRs if the review comments do not contain any of the key-
words that we used. That said, our keyword set is curated in
an extensive process, by utilizing a well-known set of security-
related keywords, which has been used in prior studies (e.g., Paul
et al. (2021) and Bosu (2014)). Then, we manually examine the
relevance of each keyword and include ones that yield a good
relevance (see Section 2.2). Hence, we believe that our keyword
set is of high quality, and that the potentially missed security
issues will not significantly impact our results.

Another aspect worth pointing out is the size of our final
dataset. Our detailed inspection step (outlined in Section 2.3),
ended us with 171 PRs with security-related code reviews, de-
spite following a similar approach by Paul et al. (2021), which
yielded 374 VCC (i.e., Vulnerability Contributing Commits during
code review). As a result, our study yielded a lower amount
of data than anticipated. Yet, to avoid any bias from modifying
the project filtration process (Section 2.1), we did not seek to
add more projects once the initial results were obtained and
the final data set was found. The aim is to avoid any further
influence from authors in trying to filter for projects that may
favor a certain outcome. However, as a case study, we focus our
contribution on deriving useful findings from our heavy manual
analysis. Therefore, we still believe our findings will be useful in
further research and helpful to practitioners who want greater
insights into the security issues faced and handled by npm project
maintainers.

Finally, in our analysis, we used the PR feature in GitHub to
search for security issues raised by project maintainers during
code review. However, there might be other security issues that
are not discussed through PR feature. That said, through our
manual analysis, we did not observe any case where a project
maintainer refers to an issue being discussed through other
platforms. Therefore, we had to rely on the PR discussion as the
main source of information for the security issues raised during
code review.

External validity are related to the generalizability of our find-
ings. Our projects dataset contains a limited number of JavaScript
projects available in the npm advisories dataset. Hence, it is
possible that there are other projects not included in our dataset,
which might also be of our interest in this study. However,
our projects dataset is of high quality, since we leveraged some

M. Alfadel, NA. Nagy, D.E. Costa et al.

filtration criteria to provide a good representation of the projects
we are interested in studying. The projects chosen for our study
include popular open-source projects that vary across domains,
languages, age, and having high activity level. Also, the number
of projects in our dataset is in-line with the similar studies (Paul
et al,, 2021; Bosu, 2014; Ebert et al., 2019) that also require simi-
lar manual process, given the extensive manual analysis required
for the study analysis and data collection process, which makes it
infeasible to include a lot of projects. Therefore, we believe most
of these results can hold for other OSS projects.

We only collected data through open source review discus-
sions, which may not provide the full picture of security per-
spective during a code review (e.g., developers’ perceptions). To
mitigate this limitation, one can collect qualitative data from in-
terviews and surveys to understand developers’ main challenges
to ensure security during code reviews. Although several works
has partially covered this area (e.g., Braz and Bacchelli (2022)),
we believe that future research can be inspired by our results and
triangulate selected findings with other data sources to enhance
prior studies in that direction.

Construct Validity. In our study (RQ;), we aim to capture the
prevalence of security issues being raised during code review. To
achieve this, we used the metadata of each pull request (PR) to
identify the files that contain security issues and the comments
that discuss these issues. While we agree that this approach may
not fully capture the phenomena we set out to measure, we
selected a broad range of measurements (including the number
of security-related PRs per project, the number of unique files
that contain identified security issues per PR, and the number of
comments that specifically discuss security issues per PR) that
we believe are meaningfully representative of the underlying
phenomena of interest.

Reliability Validity. Threats to reliability validity correspond to
the degree to which the same data would lead to the same results
when repeated. To the best of our knowledge, our study is the
first attempt to quantitatively and qualitatively investigate the
role of code review with respect to security issues; hence no
ground truth exists to compare our findings in the proposed
RQs. We defined the ground truth through the agreement or
disagreement of the raters for our investigation.

7. Conclusion

This paper conducts a study to explore the role of code re-
view from the security perspective, by analyzing ten JavaScript
open-source GitHub projects.

First, we quantify the prevalence of security issues raised
in the project Pull Requests (PRs). Our manual analysis (RQ;)
identified 171 PRs with security-related reviews, which represent
a small proportion of all PRs in the studied projects. However,
such issues are discussed by project maintainers at length. Be-
tween 4.82%-28% of all comments in the 171 PRs are related
specifically to the security related concern. Moreover, our manual
analysis showed 14 types of security issues raised in code review
(RQy). In particular, we observe that code review is effective at
identifying certain types of security issues, e.g., Race Condition,
Access Control, Deadlock and Documentation. When analyzing
how project maintainers respond to the raised security issues
(RQ3), we find that the majority of the identified security issues
are fixed and mitigated. Yet, the project maintainers sometimes
do not fix the issue, due to its technical complexity. Interestingly,
sometimes the project maintainers discuss security issues that
are not directly related to the reviewed PR. Finally, we present
some implications for practitioners and researchers, which aim to
support the role code review plays in bettering software security.

16

The Journal of Systems & Software 203 (2023) 111752

We believe that there are several possible directions for future
work based on our results. First, our study found some tools that
aided in the code review process at helping to find security de-
fects. Our findings may not be conclusive, so future work can seek
to further evaluate the effectiveness of these tools and evaluate
what types of tools are actually being used in the community to
help improve their code reviews for security purposes. Second,
documentation security issues are cases we could not find in
related work. This is perhaps a result of not directly impacting
the security of the project itself, but of the users of the project.
Future work should seek to examine how these issues impact the
end-user and analyze how the issue comes about more closely.
Finally, an obvious direction to improve upon our study would be
to gather more resources to collect more data and projects across
a wider range of languages and domains. Our work focused on a
single ecosystem and language, so a larger breadth of ecosystems
might be able to bring greater insights that could not otherwise
be seen from the projects we studied.

CRediT authorship contribution statement

Mahmoud Alfadel: Conceptualization, Methodology, Script-
ing, Data curation, Writing - original draft. Nicholas Alexandre
Nagy: Conceptualization, Data curation, Investigation. Diego Elias
Costa: Conceptualization, Supervision, Writing - review & edit-
ing. Rabe Abdalkareem: Conceptualization, Writing - review &
editing. Emad Shihab: Conceptualization, Supervision, Writing —
review & editing.

Declaration of competing interest
The authors have no conflict of interests.
Data availability

The data is available here https://zenodo.org/record/7538187#
.YOIYE-zMKEs.

References

2021. 2834 - Adjust placement of generated (x) button on contextual action
panels by EdwardCoyle - pull request #2984 - infor-design/enterprise. https:
//github.com/infor-design/enterprise/pull/2984, (Accessed on 08/07/2021).

2021. 6935 Remove order string syntax by mkaufmaner - pull request
#7160 sequelize/sequelize. https://github.com/sequelize/sequelize/pull/
7160, (Accessed on 09/06/2021).

2021. A5:2017-broken access control—OWASP. https://owasp.org/www-project-
top-ten/2017/A5_2017-Broken_Access_Control, (Accessed on 09/07/2021).

Abdalkareem, R., 2017. Reasons and drawbacks of using trivial npm packages:
The developers’ perspective. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. In: ESEC/FSE 2017, Association for
Computing Machinery, pp. 1062-1064.

2021a. Add connection specific errors by DavidTPate pull request
#2576 sequelize/sequelize. https://github.com/sequelize/sequelize/pull/
2576, (Accessed on 06/17/2021).

2021b. Add connection specific errors by DavidTPate pull request
#2576 sequelize/sequelize. https://github.com/sequelize/sequelize/pull/
2576, (Accessed on 06/16/2021).

2021. Add: CounterCache feature to hasmany models by kuzmin - pull re-
quest #2375 - sequelize/sequelize. https://github.com/sequelize/sequelize/
pull/2375, (Accessed on 06/17/2021).

2023. Add doc about render props by mjackson - pull request #10741 -
facebook/react. https://github.com/facebook/react/pull/10741, (Accessed on
01/25/2023).

2021. Add information on how to possibly fix database connection errors. by
matbrgz - pull request #3163 - strapi/strapi. https://github.com/strapi/strapi/
pull/3163, (Accessed on 09/05/2021).

2021. Add optional field role if want to register specific user role by MachiAngel -
pull request #3201 - strapi/strapi. https://github.com/strapi/strapi/pull/3201,
(Accessed on 09/01/2021).

https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://zenodo.org/record/7538187#.Y9IYE-zMKEs
https://github.com/infor-design/enterprise/pull/2984
https://github.com/infor-design/enterprise/pull/2984
https://github.com/infor-design/enterprise/pull/2984
https://github.com/sequelize/sequelize/pull/7160
https://github.com/sequelize/sequelize/pull/7160
https://github.com/sequelize/sequelize/pull/7160
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
https://owasp.org/www-project-top-ten/2017/A5_2017-Broken_Access_Control
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb4
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2576
https://github.com/sequelize/sequelize/pull/2375
https://github.com/sequelize/sequelize/pull/2375
https://github.com/sequelize/sequelize/pull/2375
https://github.com/facebook/react/pull/10741
https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/3163
https://github.com/strapi/strapi/pull/3201

M. Alfadel, NA. Nagy, D.E. Costa et al.

2021. Add rate limit on auth routes by lauriejim - pull request #1681
strapi/strapi. https://github.com/strapi/strapi/pull/1681, (Accessed on
10/02/2021).

2023. Add reset feature to batch node by HiroyasuNishiyama - pull re-
quest #2553 - node-red/node-red. https://github.com/node-red/node-red/
pull/2553, (Accessed on 01/25/2023).

2021. Add snyk badge by styfle - pull request #1420 - markedjs/marked. https:
|/github.com/markedjs/marked/pull/1420, (Accessed on 10/09/2021).

2021. added data: link fix to prevent xss by matt- - pull request #844
- markedjs/marked. https://github.com/markedjs/marked/pull/844, (Accessed
on 10/09/2021).

2023. Adding support for populating db outputted values inserted with se-
quelize.literal by renatoargh - pull request #6871 - sequelize/sequelize. https:
|/github.com/sequelize/sequelize/pull/6871, (Accessed on 01/25/2023).

Alami, A., Cohn, M.L, Wasowski, A., 2019. Why does code review work for
open source software communities? In: 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE). IEEE, pp. 1073-1083.

Alfadel, M., 2023. Qualitative analysis of security-related code reviews in npm
packages: An empirical study—zenodo. https://zenodo.org/record/7538187#
.Y800VuzMKEs, (Accessed on 01/15/2023).

Alfadel, M., Costa, D.E., Mokhallalati, M., Shihab, E., Adams, B., 2020. On the threat
of npm vulnerable dependencies in node. js applications. arXiv preprint
arXiv:2009.09019.

Alfadel, M., Costa, D.E., Shihab, E., 2021a. Empirical analysis of security vul-
nerabilities in python packages. In: 2021 IEEE International Conference on
Software Analysis, Evolution and Reengineering. SANER, IEEE, pp. 446-457.

Alfadel, M., Costa, D.E, Shihab, E. 2023. Empirical analysis of security
vulnerabilities in python packages. Empir. Softw. Eng. 28 (3), 59.

Alfadel, M., Costa, D.E., Shihab, E., Adams, B., 2022. On the discoverability of npm
vulnerabilities in node. js projects. ACM Trans. Softw. Eng. Methodol..

Alfadel, M., Costa, D.E., Shihab, E., Mkhallalati, M., 2021b. On the use of
dependabot security pull requests. In: 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories. MSR, IEEE, pp. 254-265.

2023. Allow read-access to protectedfields based on user for custom classes by
dobbias - pull request #5887 - parse-community/parse-server. https://github.
com/parse-community/parse-server/pull/5887, (Accessed on 01/25/2023).

Aloraini, B., Nagappan, M., German, D.M., Hayashi, S., Higo, Y., 2019. An empirical
study of security warnings from static application security testing tools.].
Syst. Softw. 158, 110427.

Bacchelli, A., Bird, C., 2013. Expectations, outcomes, and challenges of mod-
ern code review. In: 2013 35th International Conference on Software
Engineering. ICSE, IEEE, pp. 712-721.

Beller, M., Bacchelli, A., Zaidman, A., Juergens, E., 2014. Modern code reviews in
open-source projects: Which problems do they fix? In: Proceedings of the
11th Working Conference on Mining Software Repositories. pp. 202-211.

Bernardo, J.H., da Costa, D.A,, Kulesza, U., 2018. Studying the impact of adopting
continuous integration on the delivery time of pull requests. In: 2018
IEEE/ACM 15th International Conference on Mining Software Repositories.
MSR, IEEE, pp. 131-141.

2021. Block non-‘file://" URLs when ‘nodeintegration’ is enabled by poiru - pull
request #9224 - electron/electron. https://github.com/electron/electron/pull/
9224, (Accessed on 08/13/2021).

Bosu, A., 2014. Characteristics of the vulnerable code changes identified through
peer code review. In: Companion Proceedings of the 36th International
Conference on Software Engineering. pp. 736-738.

Bosu, A., Carver, J.C,, 2013. Peer code review to prevent security vulnerabilities:
An empirical evaluation. In: 2013 IEEE Seventh International Conference on
Software Security and Reliability Companion. IEEE, pp. 229-230.

Bosu, A., Carver,].C., Hafiz, M., Hilley, P., Janni, D., 2014. Identifying the charac-
teristics of vulnerable code changes: An empirical study. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering. pp. 257-268.

Braz, L., Bacchelli, A., 2022. Software security during modern code review: the
developer’s perspective. In: Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering. pp. 810-821.

2021. Changelog for 16.9 by gaearon - pull request #16254 - facebook/react.
https://github.com/facebook/react/pull/16254, (Accessed on 08/13/2021).
2023. Changelog for 16.9 by gaearon - pull request #16254 - facebook/react.
https://github.com/facebook/react/pull/16254, (Accessed on 01/25/2023).
Cohen, J., 1960. A coefficient of agreement for nominal scales. Educ. Psychol.

Meas. 20 (1), 37-46.

2021. CWE - common weakness enumeration. https://cwe.mitre.org/index.html,
(Accessed on 07/10/2021).

Davis, J.C,, Coghlan, CA. Servant, F., Lee, D., 2018. The impact of regular
expression denial of service (ReDoS) in practice: an empirical study at
the ecosystem scale. In: Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. pp. 246-256.

17

The Journal of Systems & Software 203 (2023) 111752

2021. davisjam/vuln-regex-detector: Detect vulnerable regexes in your project.
REDOS, catastrophic backtracking. https://github.com/davisjam/vuln-regex-
detector#readme, (Accessed on 08/12/2021).

Dey, T., Mockus, A., 2020. Effect of technical and social factors on pull request
quality for the npm ecosystem. In: Proceedings of the 14th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement.
ESEM, pp. 1-11.

di Biase, M., Bruntink, M., Bacchelli, A.,, 2016. A security perspective on code
review: The case of chromium. In: 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation. SCAM, IEEE, pp.
21-30.

2021. Docs: Update application-architecture.md by AgibMukhtar - pull request
#23650 - electron/electron. https://github.com/electron/electron/pull/23650,
(Accessed on 08/07/2021).

2023. docs: Update application-architecture.md by AqibMukhtar - pull request
#23650 - electron/electron. https://github.com/electron/electron/pull/23650,
(Accessed on 01/25/2023).

2021a. Don’t quote order columns that are functions by seth-admittedly - pull
request #783 - sequelize/sequelize. https://github.com/sequelize/sequelize/
pull/783, (Accessed on 09/06/2021).

2021b. Don’t quote order columns that are functions by seth-admittedly - pull
request #783 - sequelize/sequelize. https://github.com/sequelize/sequelize/
pull/783, (Accessed on 06/17/2021).

Ebert, F., Castor, F., Novielli, N., Serebrenik, A., 2019. Confusion in code reviews:
Reasons, impacts, and coping strategies. In: 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering. SANER, IEEE,
pp. 49-60.

2021. electron - npm. https://www.npmjs.com/package/electron, (Accessed on
09/12/2021).

2021. enable CommonMark spec 468 by trott pull request #1305
markedjs/marked. https://github.com/markedjs/marked/pull/1305, (Accessed
on 09/07/2021).

Equifax, 2021. Equifax releases details on cybersecurity incident, announces per-
sonnel changes—equifax. URL https://investor.equifax.com/news-and-events/
news/2017/09-15-2017-224018832, Accessed on 01/12/2021.

2021. Escape component keys used in reactid by syranide - pull request #714
- facebook/react. https://github.com/facebook/react/pull/714, (Accessed on
08/12/2021).

2021. escapeTextContentForBrowser no longer escapes ‘and”, quoteAttribute-
ValueForBrowser no longer escapes ' by syranide - pull request #3152
- facebook/react. https://github.com/facebook/react/pull/3152, (Accessed on
09/01/2021).

2023. feat: add a new contextbridge module by MarshallOfSound - pull request
#20307 - electron/electron. https://github.com/electron/electron/pull/20307,
(Accessed on 01/25/2023).

2021. [Feature] add file upload policy by jaeggerr - pull request #4822 - parse-
community/parse-server. https://github.com/parse-community/parse-server/
pull/4822, (Accessed on 06/16/2021).

Fincher, S., Tenenberg, ., 2005. Making sense of card sorting data. Expert Syst.
22 (3), 89-93.

2023. fix: make run-gn-format work properly on windows by brenca - pull re-
quest #18993 - electron/electron. https://github.com/electron/electron/pull/
18993, (Accessed on 01/25/2023).

2021. Fix deep me data graphql query by lauriejim pull request
#4790 - strapi/strapi. https://github.com/strapi/strapi/pull/4790, (Accessed on
09/01/2021).

2021. Fix deep me data graphql query by lauriejim pull request
#4790 - strapi/strapi. https://github.com/strapi/strapi/pull/4790, (Accessed on
09/05/2021).

2021a. Fix GFM tables not breaking on block-level structures by calculuschild -
pull request #1598 - markedjs/marked. https://github.com/markedjs/marked/
pull/1598, (Accessed on 09/07/2021).

2021b. Fix GFM tables not breaking on block-level structures by calculuschild -
pull request #1598 - markedjs/marked. https://github.com/markedjs/marked/
pull/1598, (Accessed on 06/06/2021).

2021a. fix image links with escaped brackets by UziTech - pull request #1683 -
markedjs/marked. https://github.com/markedjs/marked/pull/1683, (Accessed
on 09/06/2021).

2021b. Fix image links with escaped brackets by UziTech - pull request #1683 -
markedjs/marked. https://github.com/markedjs/marked/pull/1683, (Accessed
on 09/07/2021).

2023. Fix ReDOS #1405 by federico5o0ave pull request #1408
markedjs/marked. https://github.com/markedjs/marked/pull/1408, (Accessed
on 01/25/2023).

2023. fix(postgres): check and enable standard conforming strings when required
by sushantdhiman - pull request #10746 - sequelize/sequelize. https://github.
com/sequelize/sequelize/pull/ 10746, (Accessed on 01/25/2023).

2021. fix(redshift): allow standard_conforming_strings option by aheuermann
- pull request #10816 - sequelize/sequelize. https://github.com/sequelize/
sequelize/pull/ 10816, (Accessed on 06/17/2021).

https://github.com/strapi/strapi/pull/1681
https://github.com/node-red/node-red/pull/2553
https://github.com/node-red/node-red/pull/2553
https://github.com/node-red/node-red/pull/2553
https://github.com/markedjs/marked/pull/1420
https://github.com/markedjs/marked/pull/1420
https://github.com/markedjs/marked/pull/1420
https://github.com/markedjs/marked/pull/844
https://github.com/sequelize/sequelize/pull/6871
https://github.com/sequelize/sequelize/pull/6871
https://github.com/sequelize/sequelize/pull/6871
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb16
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb16
https://zenodo.org/record/7538187#.Y8OoVuzMKEs
https://zenodo.org/record/7538187#.Y8OoVuzMKEs
https://zenodo.org/record/7538187#.Y8OoVuzMKEs
http://arxiv.org/abs/2009.09019
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb19
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb20
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb21
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb22
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb22
https://github.com/parse-community/parse-server/pull/5887
https://github.com/parse-community/parse-server/pull/5887
https://github.com/parse-community/parse-server/pull/5887
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb24
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb25
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb26
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb27
https://github.com/electron/electron/pull/9224
https://github.com/electron/electron/pull/9224
https://github.com/electron/electron/pull/9224
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb29
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb30
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb31
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb32
https://github.com/facebook/react/pull/16254
https://github.com/facebook/react/pull/16254
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb35
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb35
https://cwe.mitre.org/index.html
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb37
https://github.com/davisjam/vuln-regex-detector#readme
https://github.com/davisjam/vuln-regex-detector#readme
https://github.com/davisjam/vuln-regex-detector#readme
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb39
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb40
https://github.com/electron/electron/pull/23650
https://github.com/electron/electron/pull/23650
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
https://github.com/sequelize/sequelize/pull/783
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb45
https://www.npmjs.com/package/electron
https://github.com/markedjs/marked/pull/1305
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://investor.equifax.com/news-and-events/news/2017/09-15-2017-224018832
https://github.com/facebook/react/pull/714
https://github.com/facebook/react/pull/3152
https://github.com/electron/electron/pull/20307
https://github.com/parse-community/parse-server/pull/4822
https://github.com/parse-community/parse-server/pull/4822
https://github.com/parse-community/parse-server/pull/4822
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb53
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb53
https://github.com/electron/electron/pull/18993
https://github.com/electron/electron/pull/18993
https://github.com/electron/electron/pull/18993
https://github.com/strapi/strapi/pull/4790
https://github.com/strapi/strapi/pull/4790
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1598
https://github.com/markedjs/marked/pull/1683
https://github.com/markedjs/marked/pull/1683
https://github.com/markedjs/marked/pull/1408
https://github.com/sequelize/sequelize/pull/10746
https://github.com/sequelize/sequelize/pull/10746
https://github.com/sequelize/sequelize/pull/10746
https://github.com/sequelize/sequelize/pull/10816
https://github.com/sequelize/sequelize/pull/10816
https://github.com/sequelize/sequelize/pull/10816

M. Alfadel, NA. Nagy, D.E. Costa et al.

Fleiss,].L., Cohen,]., 1973. The equivalence of weighted kappa and the intraclass
correlation coefficient as measures of reliability. Educ. Psychol. Meas. 33 (3),
613-619.

2023. GitHub apps - debricked. https://github.com/apps/debricked, (Accessed on
01/23/2023).

2023. GitHub integration - snyk user docs. https://docs.snyk.io/integrations/git-
repository-scm-integrations/github-integration, (Accessed on 01/23/2023).

2021. github/codeql: CodeQL: the libraries and queries that power security
researchers around the world, as well as code scanning in GitHub advanced
security (code scanning), LGTM.com, and LGTM enterprise. https://github.
com/github/codeql, (Accessed on 10/06/2021).

2021. Improve ctm edit by soupette - pull request #685 - strapi/strapi. https:
|/github.com/strapi/strapi/pull/685, (Accessed on 08/07/2021).

2021a. Improve soundness of ReactDOMFiberlnput typings by philipp-spiess -
pull request #13367 - facebook/react. https://github.com/facebook/react/pull/
13367, (Accessed on 09/01/2021).

2021b. Improve soundness of ReactDOMFiberInput typings by philipp-spiess -
pull request #13367 - facebook/react. https://github.com/facebook/react/pull/
13367#issuecomment-412349795, (Accessed on 09/01/2021).

Imtiaz, N., Thorne, S., Williams, L., 2021. A comparative study of vulnerability
reporting by software composition analysis tools. arXiv preprint arXiv:2108.
12078.

2021. Infor-design/enterprise-ng: Angular wrappers for IDS enterprise
components. https://github.com/infor-design/enterprise-ng, (Accessed
on 09/12/2021).

2023. 1Q server. https://help.sonatype.com/igserver, (Accessed on 01/23/2023).

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.,
2014. The promises and perils of mining github. In: Proceedings of the 11th
Working Conference on Mining Software Repositories. pp. 92-101.

Kononenko, O., Rose, T., Baysal, O., Godfrey, M., Theisen, D., De Water, B., 2018.
Studying pull request merges: a case study of shopify’s active merchant. In:
Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice. pp. 124-133.

Li, S., Kang, M., Hou,]., Cao, Y., 2021. Detecting node. js prototype pollution
vulnerabilities via object lookup analysis. In: Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. pp. 268-279.

Maintyld, M.V., Lassenius, C., 2008. What types of defects are really discovered
in code reviews? IEEE Trans. Softw. Eng. 35 (3), 430-448.

2021. Marked - npm. https://www.npmjs.com/package/marked, (Accessed on
09/12/2021).

McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E., 2014. The impact of code review
coverage and code review participation on software quality: A case study of
the qt, vtk, and itk projects. In: Proceedings of the 11th Working Conference
on Mining Software Repositories. pp. 192-201.

Mclintosh, S., Kamei, Y., Adams, B., Hassan, A.E., 2016. An empirical study of the
impact of modern code review practices on software quality. Empir. Softw.
Eng. 21 (5), 2146-2189.

2021. Merge pull request from GHSA-4w46-w44m-3jq3 parse-
community/parse-server@da905a3. https://github.com/parse-community/
parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a,
(Accessed on 09/20/2021).

2021. Messaging APl support of core nodes by k-toumura pull re-
quest #2402 - node-red/node-red. https://github.com/node-red/node-red/
pull/2402, (Accessed on 06/17/2021).

2021. Migrate ReactSuspense fuzz tests to property based tests by dubzzz -
pull request #18673 - facebook/react. https://github.com/facebook/react/pull/
18673, (Accessed on 06/17/2021).

Mirhosseini, S., Parnin, C., 2017. Can automated pull requests encourage software
developers to upgrade out-of-date dependencies? In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, pp.
84-94.

2021. moment - npm. https://www.npmjs.com/package/moment, (Accessed on
09/12/2021).

Nejati, M., Alfadel, M., McIntosh, S., 2023. Code Review of Build System Spec-
ifications: Prevalence, Purposes, Patterns, and Perceptions. In: Proc. of the
International Conference on Software Engineering. ICSE.

2021. nested parentheses link by UziTech pull request #1414
markedjs/marked. https://github.com/markedjs/marked/pull/1414, (Accessed
on 10/09/2021).

2021. node-red - npm. https://www.npmjs.com/package/node-red, (Accessed on
09/12/2021).

2023. nodesecurity/nsp: node security platform command-line tool. https://
github.com/nodesecurity/nsp, (Accessed on 01/23/2023).

2020. npm. https://www.npmjs.com/advisories, (Accessed on 11/02/2020).

2021. npm. https://www.npmjs.com/advisories, (Accessed on 09/08/2021).

2020. npm - libraries.io. https://libraries.io/npm, (Accessed on 11/02/2020).

2021. parse-server - npm. https://www.npmjs.com/package/parse-server, (Ac-
cessed on 09/12/2021).

18

The Journal of Systems & Software 203 (2023) 111752

Paul, R, Turzo, AK. Bosu, A, 2021. Why security defects go unnoticed during
code reviews? a case-control study of the chromium os project. In: 2021
IEEE/ACM 43rd International Conference on Software Engineering. ICSE, IEEE,
pp. 1373-1385.

2021. Protected fields pointer-permissions support by dobbias - pull re-
quest #5951 parse-community/parse-server. https://github.com/parse-
community/parse-server/pull/5951, (Accessed on 06/06/2021).

2023. protocol: cleanup by deepak1556 - pull request #2125 - electron/electron.
https://github.com/electron/electron/pull/2125, (Accessed on 01/25/2023).
2021. react - npm. https://www.npmjs.com/package/react, (Accessed on

09/12/2021).

2021. Reload grant auth config into db when add/delete grant provider by
hanyuei - pull request #991 - strapi/strapi. https://github.com/strapi/strapi/
pull/991, (Accessed on 08/07/2021).

2021. Render html in heading by UziTech pull request #1622
markedjs/marked. https://github.com/markedjs/marked/pull/1622, (Accessed
on 05/30/2021).

Rennhard, M., Kushnir, M., Favre, O., Esposito, D., Zahnd, V., 2022. Automating
the detection of access control vulnerabilities in web applications. SN
Comput. Sci. 3 (5), 376.

2021. Robust animation-end handling in ReactCSSTransitionGroup by djrodger-
spryor - pull request #4561 - facebook/react. https://github.com/facebook/
react/pull/4561, (Accessed on 08/07/2021).

2021. Roles should follow acls by georgesjamous - pull request #4895 - parse-
community/parse-server. https://github.com/parse-community/parse-server/
pull/4895, (Accessed on 06/16/2021).

2021a. security: fix REDOS vulnerabilities by davisjam pull request
#1083 - markedjs/marked. https://github.com/markedjs/marked/pull/1083#
issuecomment-368726539, (Accessed on 09/07/2021).

2021b. security: fix unsafe heading regex by davisjam - pull request #1224 -
markedjs/marked. https://github.com/markedjs/marked/pull/1224, (Accessed
on 08/08/2021).

2021. sequelize - npm. https://www.npmjs.com/package/sequelize, (Accessed on
09/12/2021).

Software, B.D., 2019. Synopsys black duck open source security and risk analysis.

Spadini, D., Aniche, M., Storey, M.-A., Bruntink, M., Bacchelli, A., 2018. When
testing meets code review: Why and how developers review tests. In: 2018
IEEE/ACM 40th International Conference on Software Engineering. ICSE, IEEE,
pp. 677-687.

Spadini, D., Palomba, F., Baum, T., Hanenberg, S., Bruntink, M., Bacchelli, A.,
2019. Test-driven code review: an empirical study. In: 2019 [EEE/ACM 41st
International Conference on Software Engineering. ICSE, IEEE, pp. 1061-1072.

2021. Stack overflow developer survey 2019. https://insights.stackoverflow.com/
survey/2019, (Accessed on 08/26/2021).

2021. strapi - npm. https://www.npmjs.com/package/strapi,
09/12/2021).

2021a. Structured /health response by montymxb - pull request #4305 - parse-
community/parse-server. https://github.com/parse-community/parse-server/
pull/4305, (Accessed on 09/05/2021).

2021b. Structured /health response by montymxb - pull request #4305 -
parse-community/parse-server. https://github.com/parse-community/parse-
server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2,
(Accessed on 09/05/2021).

2023. Structured /health response by montymxb - pull request #4305 - parse-
community/parse-server. https://github.com/parse-community/parse-server/
pull/4305, (Accessed on 01/25/2023).

2021. test: security scan by davisjam - pull request #1220 - markedjs/marked.
https://github.com/markedjs/marked/pull/1220, (Accessed on 09/07/2021).

Thongtanunam, P., McIntosh, S., Hassan, A.E., lida, H., 2015. Investigating code
review practices in defective files: An empirical study of the qt system. In:
2015 IEEE/ACM 12th Working Conference on Mining Software Repositories.
IEEE, pp. 168-179.

2021. uglify-js - npm. https://www.npmjs.com/package/uglify-js, (Accessed on
09/12/2021).

2021. Unable to override role while creating user through API o...by skavinvar-
nan - pull request #5330 - strapi/strapi. https://github.com/strapi/strapi/pull/
5330, (Accessed on 09/01/2021).

2021. Update to resolve js-yaml vulnerability by calvinchengx - pull request
#1472 - markedjs/marked. https://github.com/markedjs/marked/pull/1472,
(Accessed on 08/08/2021).

2023. Update travis-CI to use docker by toddbluhm pull request
#6443 sequelize/sequelize. https://github.com/sequelize/sequelize/pull/
6443, (Accessed on 01/25/2023).

Walden,]., 2020. The impact of a major security event on an open source project:
The case of OpenSSL. In: Proceedings of the 17th International Conference
on Mining Software Repositories. pp. 409-419.

2021. What is threat hunting?—IBM. https://www.ibm.com/topics/threat-
hunting, (Accessed on 11/03/2021).

(Accessed on

http://refhub.elsevier.com/S0164-1212(23)00147-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb64
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb64
https://github.com/apps/debricked
https://docs.snyk.io/integrations/git-repository-scm-integrations/github-integration
https://docs.snyk.io/integrations/git-repository-scm-integrations/github-integration
https://docs.snyk.io/integrations/git-repository-scm-integrations/github-integration
https://github.com/github/codeql
https://github.com/github/codeql
https://github.com/github/codeql
https://github.com/strapi/strapi/pull/685
https://github.com/strapi/strapi/pull/685
https://github.com/strapi/strapi/pull/685
https://github.com/facebook/react/pull/13367
https://github.com/facebook/react/pull/13367
https://github.com/facebook/react/pull/13367
https://github.com/facebook/react/pull/13367#issuecomment-412349795
https://github.com/facebook/react/pull/13367#issuecomment-412349795
https://github.com/facebook/react/pull/13367#issuecomment-412349795
http://arxiv.org/abs/2108.12078
http://arxiv.org/abs/2108.12078
http://arxiv.org/abs/2108.12078
https://github.com/infor-design/enterprise-ng
https://help.sonatype.com/iqserver
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb74
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb75
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb76
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb77
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb77
https://www.npmjs.com/package/marked
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb79
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb80
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb80
https://github.com/parse-community/parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a
https://github.com/parse-community/parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a
https://github.com/parse-community/parse-server/commit/da905a357d062ab4fea727a21eac231acc2ed92a
https://github.com/node-red/node-red/pull/2402
https://github.com/node-red/node-red/pull/2402
https://github.com/node-red/node-red/pull/2402
https://github.com/facebook/react/pull/18673
https://github.com/facebook/react/pull/18673
https://github.com/facebook/react/pull/18673
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb84
https://www.npmjs.com/package/moment
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb86
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb86
https://github.com/markedjs/marked/pull/1414
https://www.npmjs.com/package/node-red
https://github.com/nodesecurity/nsp
https://github.com/nodesecurity/nsp
https://github.com/nodesecurity/nsp
https://www.npmjs.com/advisories
https://www.npmjs.com/advisories
https://libraries.io/npm
https://www.npmjs.com/package/parse-server
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb94
https://github.com/parse-community/parse-server/pull/5951
https://github.com/parse-community/parse-server/pull/5951
https://github.com/parse-community/parse-server/pull/5951
https://github.com/electron/electron/pull/2125
https://www.npmjs.com/package/react
https://github.com/strapi/strapi/pull/991
https://github.com/strapi/strapi/pull/991
https://github.com/strapi/strapi/pull/991
https://github.com/markedjs/marked/pull/1622
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb100
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb100
https://github.com/facebook/react/pull/4561
https://github.com/facebook/react/pull/4561
https://github.com/facebook/react/pull/4561
https://github.com/parse-community/parse-server/pull/4895
https://github.com/parse-community/parse-server/pull/4895
https://github.com/parse-community/parse-server/pull/4895
https://github.com/markedjs/marked/pull/1083#issuecomment-368726539
https://github.com/markedjs/marked/pull/1083#issuecomment-368726539
https://github.com/markedjs/marked/pull/1083#issuecomment-368726539
https://github.com/markedjs/marked/pull/1224
https://www.npmjs.com/package/sequelize
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb106
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb107
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb108
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb108
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.npmjs.com/package/strapi
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/parse-community/parse-server/pull/4305/commits/be4aef061d7b1967ce020e286304e08a6ac389d2
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305
https://github.com/parse-community/parse-server/pull/4305
https://github.com/markedjs/marked/pull/1220
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb115
https://www.npmjs.com/package/uglify-js
https://github.com/strapi/strapi/pull/5330
https://github.com/strapi/strapi/pull/5330
https://github.com/strapi/strapi/pull/5330
https://github.com/markedjs/marked/pull/1472
https://github.com/sequelize/sequelize/pull/6443
https://github.com/sequelize/sequelize/pull/6443
https://github.com/sequelize/sequelize/pull/6443
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb120
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb120
https://www.ibm.com/topics/threat-hunting
https://www.ibm.com/topics/threat-hunting
https://www.ibm.com/topics/threat-hunting

M. Alfadel, NA. Nagy, D.E. Costa et al.

Yang,]., Tan, L., Peyton, J., Duer, KA., 2019. Towards better utilizing static
application security testing. In: 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE,
pp. 51-60.

Zerouali, A., Mens, T., Decan, A., De Roover, C., 2021. On the impact of security
vulnerabilities in the npm and RubyGems dependency networks. arXiv
preprint arXiv:2106.06747.

Zerouali, A., Mens, T., Decan, A., De Roover, C., 2022. On the impact of security
vulnerabilities in the npm and RubyGems dependency networks. Empir.
Softw. Eng. 27 (5), 1-45.

Zimmermann, M., Staicu, C.-A., Tenny, C., Pradel, M., 2019. Small world with high
risks: A study of security threats in the npm ecosystem. In: 28th {USENIX}
Security Symposium ({USENIX} Security 19). pp. 995-1010.

Mahmoud Alfadel is a postdoctoral researcher at the REBELs Lab, in the Cheriton
School of Computer Science at the University of Waterloo. His research interests
cover a wide range of software engineering-related topics, including mining
software repositories, empirical software engineering, software ecosystems, and
release engineering.

Nicholas Alexandre Nagy is a DevOps Engineer at EXFO. Before that he joined
the DAS Lab as a research assistant under the NSERC Undergraduate Research
Student Award. His main research interests relate to Software Quality Assurance,
Mining Software Repositories and Machine Learning.

19

The Journal of Systems & Software 203 (2023) 111752

Diego Elias Costa is an assistant professor in the Computer Science department
at UQAM in Montréal, Canada. He is also part of the LATECE research group.
Before that, he was a postdoctoral researcher at Concordia University, Canada,
working with Prof. Emad Shihab. He received his Ph.D. from Heidelberg Univer-
sity, Germany in the Parallel and Distributed Systems Group of Prof. Andrzejak.
He is interested in Software Engineering Research. In a few words, he wants to
reduce the burden on software developers by tackling aspects related to software
maintenance and software performance.

Rabe Abdalkareem received his Ph.D. in Computer Science and Software Engi-
neering from Concordia University. His research investigates how the adoption
of crowdsourced knowledge affects software development and maintenance.
Abdalkareem received his master’s in applied computer science from Concordia
University. His work has been published at premier venues such as FSE, ICSME,
and MobileSoft, as well as in major journals such as TSE, IEEE Software, EMSE
and IST. You can find more about him at http://users.encs.concordia.ca/rababdu.

Emad Shihab is a professor in the Department of Computer Science and
Software Engineering at Concordia University. He received his Ph.D. from Queens
University. Dr. Shihabs research interests are in Software Quality Assurance,
Mining Software Repositories, Technical Debt, Mobile Applications and Software
Architecture. He worked as a software research intern at Research In Motion
in Waterloo, Ontario and Microsoft Research in Redmond, Washington. Dr.
Shihab is a member of the IEEE and ACM. More information can be found at
http://das.encs.concordia.ca.

http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb122
http://arxiv.org/abs/2106.06747
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb124
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb125
http://refhub.elsevier.com/S0164-1212(23)00147-4/sb125
https://www.exfo.com/
http://users.encs.concordia.ca/rababdu
http://das.encs.concordia.ca

	Empirical analysis of security-related code reviews in npm packages
	Introduction
	Methodology
	Project selection
	Identification of PR candidates
	Manual validation of the identified PR candidates

	Results
	RQ1: How often are security issues identified during code review?
	RQ2: What types of security issues are identified during code review?
	RQ3: How do developers respond to the identified security issues during code review?

	Discussion & Implications
	Security code review for non-advisory projects
	Comparison with advisories dataset
	Tool usage for security code review
	Implications

	Related Work
	Threats to Validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References

