
Characterization of Dynamic Memory Allocations in
Real-World Applications: An Experimental Study

Diego Costa, Rivalino Matias Jr.
School of Computer Science

Federal University of Uberlandia
Uberlandia-MG, Brazil

diegoelias@comp.ufu.br, rivalino@ufu.br

Abstract— Dynamic memory allocation is one of the most
ubiquitous operations in computer programs. In order to design
effective memory allocation algorithms, it is a major requirement
to understand the most frequent memory allocation patterns
present in modern applications. In this paper, we present an
experimental characterization study of dynamic memory
allocations in seven real-world widely used applications. The
results show consistent allocation/deallocation patterns present in
different applications. Especially, we observe that most of the
allocations fitted a well-defined range of block sizes. Also, we
found that more than 70% of all dynamically allocated memory
lasted no more than 0.1 second in the investigated applications.
These and other findings of this study are useful for research
works planning synthetic workloads related to dynamic memory
allocations.

Keywords—memory management; dynamic allocation;
characterization; experimental study

I. INTRODUCTION
Dynamic memory allocation is one of the most ubiquitous

operations in computer programs. In general, most
sophisticated real-world applications need to allocate and
deallocate, dynamically, portions of memory of varying sizes,
many times, during their runtime. These operations are
commonly performed very often, which make their individual
execution time significantly important. The code responsible
for implementing the memory allocation routines is called
memory allocator [1].

In [2], the authors present an empirical study comparing
seven memory allocators. The comparison was based on
executing a real middleware application, linked to every
analyzed allocator and under the same workload. The study
compared the performance of the memory allocators in terms
of execution time, memory usage, and memory fragmentation.
Note that this study’s results are relevant only to applications
with memory usage patterns similar to the middleware used,
which is predominantly based on small allocation requests (less
than 64 bytes) performed mainly at the program start time.

In [3], the same allocators investigated in [2] were
analyzed, however using a synthetic workload instead of a real
application. This approach showed flexibility in evaluating the
allocators under different experimental factors, such as varying

the size and number of allocations, number of threads, and
number of machine processors. However, the limitation of the
study was exactly on the definition of these factors’ levels,
which according to the authors were chosen mainly based on
their experiences and not on previous studies.

Therefore, we searched for published works that could be
used as baseline in setting these factors. We found no research
work on the characterization of dynamic memory allocations in
real-world applications, which could be used as input to set the
experimental factors and parameters necessary to apply the
synthetic workload approach proposed in [3] more realistically.
This lack of experimental data in this area motivated us to
develop this study.

Hence, in this paper we aim to contribute to the body of
knowledge in this area presenting an experimental study on the
characterization of dynamic memory allocations in seven real-
world applications. By identifying different memory allocation
patterns, present in different categories of real-world
applications, experimenters can use it not only for modeling
and simulation, but also to realistically generate their synthetic
workloads in experimental studies related to memory
management. Especially, the observed patterns can be used as
input for new memory allocator algorithms that can be
developed exploiting these usage behaviors. The rest of the
paper is organized as follows. Section II describes the
methodology adopted in this study, detailing the method and
materials used. The experimental plan is presented in Section
III and its results in Section IV. Section V discusses the major
contribution of this work. Finally, Section VI presents our
conclusion and final remarks.

II. METHOD AND MATERIALS

A. Instrumentation
In order to capture the dynamic memory allocation

behavior of real applications, we instrumented their
allocation/deallocation routines to collect the necessary
memory usage data in runtime. For this purpose, we adopted a
less intrusive approach, which did not require changing the
applications’ source-code. We developed a memory allocator
wrapper called DebugMalloc. This wrapper intercepts the
allocation/deallocation calls, collects their parameter values,
and redirects the original requests to the default allocator (see

This research work was partially supported by the following research agencies:
CNPq, CAPES, and FAPEMIG.

IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

1526-7539/15 $31.00 © 2015 IEEE

DOI 10.1109/MASCOTS.2015.28

93

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

Fig. 1). Nowadays, the default memory allocator in Linux is
ptmalloc2 [4].

Using our approach, it is possible to collect data from every
allocation/deallocation operation, in a less intrusive way than
other tools such as SystemTap [5], Ptrace[6], and Valgrind [7].
To execute the DebugMalloc, it is required to dynamically link
it to the target application. This is done by changing the OS
environment variable, LD_PRELOAD, to point to the shared
library containing the DebugMalloc code.

Fig. 1. DebugMalloc workflow.

Once activated, DebugMalloc collects a set of data for each
allocation and deallocation operation performed by the
instrumented application. Tables I and II present the
parameters collected in each allocation and deallocation
operation, respectively.

The data collected by DebugMalloc are kept in memory
during the whole experiment, and stored into a file in the end.
We adopted this strategy to avoid undesired influences of disk
access routines on the results. In this work, we did not consider
the overhead of the adopted instrumentation, given that we
focused on the memory allocation characterization, regardless
of the allocation operations’ execution time. Our main goal
was to understand the dynamically allocated memory usage
patterns present in the evaluated real-world applications.

TABLE I. DATA COLLECTED PER ALLOCATION REQUEST

Data Description

Size (in bytes) Allocation size.

Operation type Type of allocation routine: mallocª,
calloc, and realloc.

Time
(in milliseconds) Allocation request time.

Address Address of the allocated memory
block.

a. The operator new calls malloc internally, thus every use of new was categorized as malloc.

TABLE II. DATA COLLECTED PER DEALLOCATION REQUEST

Data Description
Time

(in milliseconds) Deallocation request time.

Address Address of the memory block to be
deallocated.

B. Applications
In this study, we selected seven applications according to

the following criteria:

• The application must be widely adopted.

• The application must run under the Linux operating
system.

• The application must be written in C/C++ languages.
This criterion is required since DebugMalloc was
developed to intercept calls to the default allocator of
glibc [4], which is the Linux standard library for
C/C++ programs.

• The application must use the default memory
allocator available at glibc. Some applications do not
use the default allocator and bring their own allocator.
DebugMalloc intercepts only requests to the default
allocator.

• The application must allow automating its main
operations. All tests were automated to be performed
without human intervention, avoiding any
uncontrolled influence.

Based on the above-mentioned criteria, we chose
applications of two different categories: server and desktop.
We selected two server applications and five desktop
applications, which are described next:

1. MySQL: is a widely used relational database
management server [8], with more than 100 million copies
distributed. We used the MySQL Community Server 5.6.12.

2. Cherokee: is a lightweight and high-performance web
server [9]. Cherokee has been considered one of the best web
servers in terms of performance, for both static and dynamic
content [10]. We used its stable version 1.0. Our primary
choice was the Apache web server [11], however it does not
use the default memory allocator; thus it could not be used in
this study.

3. CodeBlocks: is a cross-platform IDE for C, C++, and
Fortran [12]. It has been developed since 2005, and we used its
version 13.2.

4. VLCPlayer: is a cross-platform media player [13]. It
has more than 17 years under development; we used the
version 2.1.4.

5. Octave: is a high-level interpreted language
framework for numeric computation [14]. It provides from
numeric solutions to graphic manipulation, similarly to the
well-known Matlab software. It has been developed since
1998, and we used the version 3.8.1.

6. Inkscape: is a cross-platform editor for vector
graphics [15]. It has more than 10 years under development
and we used its version 0.48.4.

7. Lynx: is a text interface web browser [16] that has
been developed since 1992. We used the version 2.8.7rel.2.

94

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

III. EXPERIMENTAL PLAN
For the characterization of dynamic memory allocations,

we adopted a typical usage scenario for each selected
application. For each scenario, we replicated the test 30 times,
in order to reduce the effects of experimental errors on the
results. Thus, we used the average and median of the
replication results in our analyses. Next, we describe each
workload scenario implemented per application.

1. MySQL: we used the test database Sakila [17]
provided with MySQL. Sakila is a functional video rental shop
database with 22 tables, and it uses the main data structures of
MySQL, such as views, stored procedures, and triggers. To
perform queries we used the MySQLSlap [18], an application
that emulates MySQL clients performing automatically a pre-
determined set of operations on the database. The test scenario
consisted of three steps: firstly Slap creates the database
through a single client connection; next it emulates 50 clients
performing, simultaneously, 36 operations of search, update,
and delete on the created database; finally, it removes (drops)
the test database.

2. Cherokee: we used the Apache bench (ab) tool [19] to
generate this experiment workload. The ab is a program that
executes automated access to web pages for web server
performance evaluation purpose. The test scenario consisted of
20 clients performing, simultaneously, 50 accesses to the
Cherokee administration web page.

3. CodeBlocks: we created a test scenario where the
CodeBlocks initializes and loads a workspace with its own
source code. We used the CodeBlocks project (version 13.12),
which contains almost 20MB of source-code and project
artifacts; it can be considered a large software project.

4. VLCPlayer: to characterize the VLCPlayer dynamic
memory usage, we created two test scenarios. In the first we
executed uninterruptedly an audio file (5:34 minutes), and in
the second we executed a high-definition movie video (9:56
minutes).

5. Octave: for this experiment we performed the Gauss
elimination method to scale one tridiagonal matrix of order 50.
This algorithm is typically used for linear problem solving
[20], which is one of the main features of Octave.

6. Inkscape: to characterize the Inkscape dynamic
allocations we created a test scenario where the editor is
initialized and loads an image with resolution of 1920x1080
pixels and size of 280KB.

7. Lynx: for this characterization Lynx performed
accesses to a set of five web sites. We chose the web sites by
selecting the five most accessed web sites from the Internet,
according to the Alexa Ranking [21].

All the above-mentioned characterization experiments were
conducted in a test bed composed of a multicore computer
(Intel Core i5 2410M), 6GB of RAM, running the Linux OS
(kernel 3.11.6-4-desktop) from the OpenSuse 13.1 distribution.
Fig. 2 shows the processor topology of the computer used in
our tests.

Fig. 2. Processor topology of the test-bed machine.

IV. RESULT ANALYSIS

A. Amount of Allocated Memory
A high diversity was observed in the amount of allocated

memory and number of allocations among the evaluated
applications (see Table III). The amount of memory varied
between 9MB with 30,000 allocations (Lynx), and 2.4GB
allocated in more than 12.4 million of allocation requests
(CodeBlocks). This variation was not a big surprise, given the
different application types and thus different usage scenarios.
Coincidentally, the application that allocated the largest
amount of memory was the same that performed the highest
number of allocations. However, in the Inkscape test scenario,
although it had requested more than 12.1 million of allocations,
the total amount of memory allocated was only 564MB; due to
the small average of allocated memory size.

TABLE III. ALLOCATION BEHAVIOR PER APPLICATION

Application Number of
Allocations

Allocated
Memory

(megabytes)

Average
size of

allocation
(bytes)

Median
size of

allocation
(bytes)

MySQL 467,348 686 1,467.40 1,144

Cherokee 31,727 14 420.13 264

CodeBlocks 12,412,302 2,493 200.9 104
VLCPlayer

(audio) 138,747 335 2,410.82 100

VLCPlayer
(video) 1,513,223 1,885 1,245.42 56

Octave 579,606 100 172.07 32

Inkscape 12,172,463 564 46.31 32

Lynx 31,303 9 268.51 24

B. Allocation Sizes
We analyzed the size of allocations per application. The

complete distribution of allocation sizes are shown in Figures 3
to 10. Note that most of the allocations are grouped in a well-
defined range of sizes. All desktop applications had the
majority of their allocation sizes until 100 bytes, while the
server applications, MySQL and Cherokee, had their majority
of allocation sizes with 1,144 and 264 bytes, respectively. It is
noteworthy that the VLCPlayer (audio) also had a substantial
amount of allocations with sizes varying between 1,000 and
1,230 bytes. All applications presented, in average, 2,336
different allocation sizes; however, the majority of memory
allocations were distributed in a set of ten different sizes. The
ten most allocated sizes represented 75.2% of the total amount

95

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

of allocations, ranging from 50% (in Lynx) to 92% (in
Cherokee). Fig. 11 shows these findings.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Allocated Size (in bytes)

0.0

0.1

0.2

0.3

0.4

0.5

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 3. Distribution of allocation sizes in MySQL.

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0.00

0.01

0.02

0.03

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 4. Distribution of allocation sizes in Cherokee.

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0
2
4
6
8

10
12
14

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 5. Distribution of allocation sizes in CodeBlocks.

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Allocated Size (in bytes)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 6. Distribution of allocation sizes in VLCPlayer (audio).

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 7. Distribution of allocation sizes in VLCPlayer (video).

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0.0

0.2

0.4

0.6

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 8. Distribution of allocation sizes in Octave.

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0
2
4
6
8

10
12
14

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 9. Distribution of allocation sizes in Inkscape.

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0.00

0.01

0.02

0.03

C
um

ul
at

iv
e

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

Fig. 10. Distribution of allocation sizes in Lynx.

MySQL
CodeBlocks

VLC Audio
VLC Video

Octave
Inkscape

Lynx
Cherokee

0

20

40

60

80

100

Pe
rc

en
ta

ge

Fig. 11. Percentage of the ten most allocated sizes per application.

The Table IV presents the ten most allocated sizes per
application. The values inside the parentheses represent the
percentage of a given allocation size with respect to the total
amount of allocations. As can been seen, every application has
its own set of most allocated sizes; some of these sizes are
observed in different applications. For example, allocations of
24 and 40 bytes appeared in the most allocated sizes for five
different applications. The second most recurrent allocation
sizes are 16, 32, 64 and 72 bytes, which appeared in three
different applications.

96

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. TEN MOST ALLOCATED SIZES PER APPLICATION

Ranking
Allocated Size in bytes and Percentage of Allocations

MySQL CodeBlocks VLCPlayer
(audio)

VLCPlayer
(video) Octave Inkscape Lynx Cherokee

1 1144 (60%) 104 (58%) 72 (14%) 32 (14%) 16 (14%) 32 (14%) 16 (16%) 264 (79%)

2 128 (9%) 168 (7%) 9392 (13%) 56 (10%) 32 (13%) 8 (11%) 5 (6%) 21 (3%)

3 280 (3%) 568 (5%) 1229 (11%) 72 (7%) 24 (11%) 1 (9%) 40 (6%) 61 (2%)

4 288 (3%) 128 (4%) 1200 (8%) 40 (5%) 48 (8%) 30 (9%) 100 (5%) 27 (2%)

5 8160 (3%) 232 (3%) 1011 (7%) 976 (5%) 40 (7%) 12 (5%) 24 (5%) 51 (1%)

6 376 (2%) 360 (3%) 40 (6%) 86 (4%) 64 (6%) 14 (5%) 32 (3%) 22 (1%)

7 64 (2%) 296 (3%) 44 (3%) 42 (4%) 27 (3%) 47 (5%) 3 (3%) 179 (1%)

8 632 (2%) 40 (2%) 16 (3%) 24 (4%) 26 (3%) 45 (5%) 7 (2%) 1155 (1%)

9 240 (1%) 64 (1%) 24 (3%) 8368 (3%) 512 (3%) 51 (5%) 2 (2%) 397 (1%)

10 24 (1%) 424 (1%) 907 (2%) 80 (3%) 28 (2%) 53 (5%) 72 (2%) 2126 (1%)
 The highlighted sizes appeared in at least three applications.

C. Allocation Routines

We also analyzed the usage percentage of the three main
allocation routines: malloc, calloc, and realloc. Each routine
performs memory allocation in a different manner, and its use
depends on how memory is used and thus varies according to
the application needs. Note that the C++ new operator
internally calls malloc.

In this study, the most frequent allocation routine observed
was malloc, which was used in 87.9% of all allocation
requests, followed by realloc (6.07%) and calloc (6.03%).
Only VLCPlayer and Lynx used calloc and realloc in a higher
extent (see Table V).

TABLE V. USAGE PERCENTAGE OF ALLOCATION ROUTINES PER
APPLICATION

Application malloc realloc calloc

MySQL 99.91 0.06 0.03

Cherokee 87.49 12.38 0.13

CodeBlocks 92.51 7.18 0.31

VLCPlayer (audio) 75.40 4.71 19.89

VLCPlayer (video) 79.72 5.49 14.79

Octave 99.71 0.08 0.21

Inkscape 95.61 2.93 1.46

Lynx 72.84 15.72 11.44

D. Memory Deallocation
Memory deallocation is an important factor in the

application’s behavior from the dynamic memory allocation
viewpoint. Table VI presents the number of deallocation
requests and the percentage of deallocation requested to null
pointers (addresses). The execution of deallocation requests to
null pointers is a software defect and not all allocators handle
properly this case; it is not unusual to observe application
failures caused by this defect.

The experiments showed that MySQL database was the
application with the higher number of null-pointer
deallocations (approx. 12%), followed by VLCPlayer (audio)
(2.37%), CodeBlocks (2.27%), and VLCPlayer (video)
(2.05%). The remaining applications had a rate of null-pointer
deallocations less than 1%. Note that these experiments were
never designed to detect memory leaks, especially because in
some cases the applications were finished without freeing the
last portion of their memory. Therefore the analysis of unfreed
allocations is beyond the scope of this work.

TABLE VI. DEALLOCATION BEHAVIOR PER APPLICATION

Application Number of
deallocations

% of null-pointer
deallocations

MySQL 493,965 11.80

Cherokee 29,017 0.02

CodeBlocks 11,001,975 2.27

VLCPlayer (audio) 120,051 2.37

VLCPlayer (video) 1,397,594 2.05

Octave 464,206 0.96

Inkscape 11,430,033 0.11

Lynx 14,234 0.84

E. Retention Time
Retention time of an allocated memory block is the time

interval between its allocation and deallocation. It is an
important factor to be considered in the design of memory
allocators, since it has a significant influence on heap memory
fragmentation; one of the main problems in dynamic memory
management [22]. Therefore, characterizing the retention time
of real applications is very important to understand their
memory allocation behaviors. In order to analyze the retention
time for each memory block allocated by the investigated
applications, we classified the allocations’ retention time into
three categories:

97

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

1. Short duration allocation: allocation that has a
retention time less than 100 milliseconds.

2. Medium duration allocation: allocation that has a
retention time between 100 milliseconds and 1 second.

3. Long duration allocation: allocation that has a
retention time higher than one second. Usually, this type of
allocation represents data structures that remain allocated
during the whole application execution time.

TABLE VII. AVERAGE EXPERIMENT EXECUTION TIME PER APPLICATION

Application Avg. execution
time (seconds)

Median execution
time (seconds)

MySQL 25.34 25.34

Cherokee 14.12 14.05

CodeBlocks 58.09 58.09

VLCPlayer (audio) 332.17 332.17

VLCPlayer (video) 593.25 593.20

Octave 7.63 7.68

Inkscape 67.23 67.08

Lynx 26.04 26.04

It is important to analyze the retention time taking into
consideration the time spent for each test scenario (Table VII).
Even in the shortest execution time, obtained with Octave (7.63
seconds), the three categories of retention time could be
analyzed without any loss. Our experimental results indicated
that, in average, 71.6% of the memory allocations were from
the short duration category, and 7.85% were classified as
medium duration, i.e., almost 80% of the allocations were
deallocated within one-second interval (see Fig. 12). For the
server applications, this average is higher (86%). Only
VLCPlayer (video) and Lynx had their long duration
allocation rate higher than 30%. These findings suggest that
the majority of dynamic memory allocations are for temporary
use, not lasting too long during the application execution.

MySQL
CodeBlocks

VLC Audio
VLC Video

Octave
Inkscape

Lynx
Cherokee

0

20

40

60

80

100

Pe
rc

en
ta

ge

 Short Medium Long

Fig. 12. Percentage of short, medium, and long allocation’s retention time per
application.

The long duration allocations were, in average, 20.51% of
the memory allocations executed. Based on the observed
patterns for long duration allocations, we classified the
applications into two behaviors:

1. Growing usage: the application gradually increments
the number of long duration allocations along its execution
time. This behavior is found in applications that have a
growing constant rate in the number of long duration
allocations. In this case, part of the allocations is not
deallocated in short time, increasing the amount of memory in
use.

2. Plateau: the application performs the majority of long
duration allocations in the first set of allocations requests. This
behavior is evidenced by a peak of the long duration
allocations in the first set of operations and then it remains
approximately constant, indicating that most of the allocations
after the peak have a short or medium retention time.

Due to the large number of allocation/deallocation
operations performed during the experiments, we calculated
the amount of long duration allocations accumulated for each
group of 1,000 successive operations (allocations or
deallocations). Figures 13 to 20 show these results. We found
that four applications fit in the Growing usage pattern, which
were CodeBlocks (Fig. 13), Lynx (Fig. 14), Octave (Fig. 15),
and VLCPlayer (video) (Fig. 16). The remaining applications
presented the Plateau pattern: VLCPlayer (audio) (Fig. 17),
MySQL (Fig. 18), Cherokee (Fig. 19), and Inkscape (Fig. 20).
It is worth mentioning that, in Fig. 18, the decreasing of the
amount of long duration allocations is the consequence of
dropping the test database, as described in Section III.

0 4000 8000 12000 16000 20000 24000

Group of 1000 operations

0
200
400
600
800

1000
1200
1400
1600

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 13. CodeBlocks long duration allocation pattern (Growing Usage).

0 5 10 15 20 25 30 35 40 45

Group of 1000 operations.

0
2
4
6
8

10
12
14
16
18

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 14. Lynx long duration allocation pattern (Growing Usage).

0 200 400 600 800 1000

Group of 1000 operations

0
20
40
60
80

100
120
140

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 15. Octave long duration allocation pattern (Growing Usage).

98

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

0 500 1000 1500 2000 2500 3000

Group of 1000 operations

0
20
40
60
80

100
120
140

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 16. VLCPlayer (vídeo) long duration allocation pattern (Growing Usage).

0 20 40 60 80 100 120 140 160 180 200 220 240 260

Group of 1000 operations

0
2
4
6
8

10
12
14
16
18
20

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 17. VLCPlayer (audio) long duration allocation pattern (Plateau).

0 100 200 300 400 500 600 700 800 900

Group of 1000 operations

0
5

10
15
20
25
30
35
40

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 18. MySQL long duration allocation pattern (Plateau).

0 10 20 30 40 50 60

 Group of 1000 operations

0

1

2

3

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 19. Cherokee long duration allocation pattern (Plateau).

0 4000 8000 12000 16000 20000 24000

Group of 1000 operations

0
100
200
300
400
500
600
700
800

Lo
ng

 d
ur

at
io

n
al

lo
ca

tio
ns

(th

ou
sa

nd
s)

Fig. 20. Inkscape long duration allocation pattern (Plateau).

V. DISCUSSION
This work provides experimental evidences on dynamic

memory allocation/deallocation patterns in selected real-world
applications. These evidences contribute to plan more realistic
synthetic workloads related to memory management, and also
for the improvement of memory allocator algorithms.

The first contribution of this paper is related to the amount
of memory allocations performed by the tested applications.
The results show that the applications requested between 30
thousands and 12.5 million allocations. Given that we adopted
test scenarios considering the normal usage of each application,
in a moderate level, one could use these values as baselines for
synthetic workloads in experiments involving similar
application categories (e.g., web browsers, database and web
servers, media players, etc.).

Another contribution of this work is the consistent pattern
found in the distribution of allocation sizes. Although the
tested applications allocated 2,336 different sizes, on average,
the majority of allocations were concentrated in a small set of
different sizes. The experimenter must consider this pattern
when planning synthetic workloads. Particularly, it is important
to highlight that many synthetic workload generators currently
used to test memory allocators usually set the allocation sizes
in random manner (e.g., [3]), or simply adopt a constant size
for all allocations (e.g.,[23], [24]). The experimental findings
in this study suggest that the mix of these two approaches can
lead to a much more realistic workload. Essentially, it should
be done by fixing a given range of allocation sizes applied to
the majority of memory allocations, and randomly choose the
size of the remaining set of allocation requests.

Even though the set of the most allocated sizes were
distinct for each investigated application, the distribution of
allocation sizes can be exploited to improve the performance of
memory allocators, e.g., by using particular data structures to
meet this specific set of allocated sizes; also by adopting cache
mechanisms applied to memory blocks that fit the pattern of
most allocated sizes. We know from the literature that some
allocators adopt cache mechanisms for smaller requests (e.g.,
[4], [23]), but the present study suggests that these
implementations could be improved by targeting different
ranges of allocated sizes in addition to smaller ones.

Another interesting finding related to allocation sizes relies
on the different patterns found for Desktop and Server
applications. Desktop applications allocated smaller sizes more
frequently than Server applications. This result can be used not
only to generate differentiated workloads for Desktop and
Server applications, but also to design specific memory
allocators for these application categories. Nowadays, it is
common to use the same memory allocator algorithm for
Desktop and Server applications, interchangeably. For
example, in Linux many Server applications (e.g., MySQL)
and Desktop applications (e.g., VLCPlayer) use the default
glibc memory allocator, i.e., ptmalloc2.

The results also showed that the malloc was the most used
routine for memory allocations. This outcome was not far from
the expected, since malloc is the most straightforward
allocation routine and also because it is called by the new
operator. However, 4 out of 8 tested applications had a
significant share of their dynamic memory allocation requests
using calloc and realloc routines. We found this behavior in
both server (Cherokee used realloc in 12% of its allocations)
and desktop applications (Lynx used calloc/realloc in 27% of
its allocations). This result could be used in experiments to set
up the usage distribution of the allocation routines in order to

99

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

allow the synthetic workload generator to test, in a more
realistic way, the three routines implemented by memory
allocators being investigated.

The pattern found related to the retention time of allocated
memory blocks is another important contribution of this paper.
The experimental results indicated that 71.6% of the memory
allocated was retained for less than 0.1 second. This indicates
that the majority of the requests were used in a small scope of
code. Approximately 20% of the allocations were retained for
more than one second. This type of allocation usually
represents data structures that are kept in memory until the end
of the experiment. In case of long duration allocations, the
results also indicated two clear patterns: the Growing Usage
and the Plateau. Not only experimental works, but also
modeling and simulation studies could benefit of these results.

We highlight that some of the synthetic workloads used to
evaluate memory allocators (e.g., [3], [23], [24]) implement a
loop that allocates and deallocates memory blocks immediately
after their use. This means that their retention of memory
blocks behaves differently as observed in the real applications;
usually this approach is adopted for its simplicity. We believe
that a synthetic workload planned to accurately emulate the
behavior of real applications should consider the patterns found
in this study with respect to the retention time of memory
blocks. One possible method could be to classify the blocks
into short duration and long duration, based on their retention
times. Hence, the short duration blocks could be deallocated
right after their use, and the long duration blocks could be
deallocated at the end of the experiment. To emulate the
Growing Usage and Plateau patterns, a synthetic workload
generator could distribute the long duration blocks in the
beginning of the experiment (following the Plateau pattern) or
uniformly distributing them during the whole experiment
(similar as the Growing Usage pattern). This method may
introduce some additional complexity to synthetic workload
generators; however, we believe that it contributes to have
synthetic workloads a step forward to a more realistic test
scenario.

Potential extension of this study should be the increasing in
the number and variety of tested applications, analyzing the
new results not only with respect to the patterns observed in
this study, but also looking for new patterns that eventually
may arise as a result of a larger sample with different
applications. Another important extension would be the
correlation analysis between the observed memory allocation
patterns and their effects on the heap memory fragmentation;
the design of new memory allocators can benefit from this
analysis in order to select better allocation strategies and data
structures to mitigate this relevant memory-related problem.

VI. FINAL REMARKS
In modelling, analysis and simulation of computer

applications, dynamic memory allocations take a very
important role, given their ubiquitous nature in virtually all
categories of computer programs.

The lack of experimental studies that characterize the
behavior of dynamic memory allocations, based on real-world
applications, motivated us to conduct this work.

The findings discussed in this paper, especially the memory
usage patterns consistently found in different applications, can
be used by experimenters as a baseline to improve their
synthetic workload plans towards more realistic test scenarios.

As a concrete example, these results have been used in a
work in progress related to the performance evaluation of
several widely used memory allocator algorithms. We use the
memory patterns found in this study to create different
synthetic workloads for dynamic memory usage in order to
evaluate the allocators’ performance from different perspective
(e.g., response time, memory usage, memory fragmentation).
This is part of an ongoing larger project that aims to design a
new multicore general-purpose user-level memory allocator.

REFERENCES

[1] U. Vahalia, “UNIX Internals: The New Frontiers,” Prentice Hall, 1995.
[2] T. B. Ferreira, R. Matias, A. Macedo, and L. B. Araujo, “An

experimental study on memory allocators in multicore and
multithreaded applications,” in Proc. of International Conf. on Parallel
and Distributed Computing, Gwangju, PDCAT-11, 2011, pp. 92-98.

[3] D. E. Costa, M. Fernandes, R. Matias, and L. B. Araujo, “Experimental
and theoretical analyses of memory allocation algorithms,” in Proc. of
the 29th Annual ACM Symp. on Applied Computing, Gyeongju, AMC
SAC’14, 2014, pp. 1545-1546.

[4] W. Gloger. (2006, June 5). Ptmalloc [Online]. Available:
http://www.malloc.de/en/

[5] B. Jacob, P. Larson, B. Leitao, S. A. M. M. Da Silva, “SystemTap:
Instrumenting the Linux Kernel for analyzing performance and
functional problems,” in IBM Redbook, 1st ed. International Business
Machine Corporation, 2009.

[6] P. Padala. (2002). Playing with ptrace, Part I. Linux Journal. [Online].
Available: http://www.linuxjournal.com/article/6100

[7] Valgrind Developers. (2014). Valgrind User Manual. [Online]
Available: http://valgrind.org/docs/manual/manual.html

[8] MySQL. (2015). MySQL [Online]. Available: http://www.mysql.com/
[9] A. L. Ortega. (2013) Cherokee [Online]. Available: http://cherokee-

project.com/
[10] A. H. Barea, “Analysis and evaluation of high performance web

servers,” M.S. thesis, EETAC, UPC, Barcelona, 2011.
[11] The Apache Software Foundation. (2015). Apache HTTP Server

[Online]. Available: http://httpd.apache.org/
[12] N. Elah. (2014). Code::Blocks [Online]. Available:

http://www.codeblocks.org/
[13] VideoLAN. (2015). VLC Media Player [Online]. Available:

http://www.videolan.org/vlc/
[14] GNU. (2014, August 6). Octave [Online]. Available:.

http://www.gnu.org/software/octave/
[15] Inkscape. (2015). Inkscape [Online]. Available:

http://www.inkscape.org/pt/
[16] Lynx. (2014). Lynx Web Browser. [Online] Available:

http://lynx.isc.org/
[17] MySQL. (2015, March 22). Sakila Sample Database [Online].

Available: http://dev.mysql.com/doc/sakila/en/
[18] MySQL. (2014). MySQLSlap Emulation Client [Online].

http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.html
[19] Apache Software Foundation. (2015). Apache HTTP server

benchmarking tool [Online]. Available:.
http://httpd.apache.org/docs/2.2/programs/ab.html

[20] G. D. Smith, “Solving linear problems: exact methods,” in Numerical
Solution of Partial Differential Equations, 3rd ed. Oxford: OUP, 1986,
pp. 119–122.

100

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

[21] Alexa. (2014). The top 500 sites on the web [Online]. Available:.
http://www.alexa.com/topsites/

[22] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic
storage allocation: a survey and critical review,” in Proc. of the Int’l
Workshop on Memory Management, London, IWMM '9, 1995, pp. 1-
116

[23] E. D. Berger, K.S. McKinley, R.D. Blumofe, and P.R.Wilson, “Hoard: a
scalable memory allocator for multithreaded applications,” in Proc. of

the 9th International Conf. on Architectural Support for Programming
Languages and Operating Systems, Cambridge, 2000, pp. 117-128.

[24] M. M. Michael, “Scalable Lock-Free Dynamic Memory Allocation,” in
Proc. of the ACM SIGPLAN 2004 Conf. on Programming language
design and implementation, Washington, PLDI’04, 2004, pp. 35-46.

101

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore. Restrictions apply.

