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Abstract— Dynamic memory allocation is one of the most 
ubiquitous operations in computer programs. In order to design 
effective memory allocation algorithms, it is a major requirement 
to understand the most frequent memory allocation patterns 
present in modern applications. In this paper, we present an 
experimental characterization study of dynamic memory 
allocations in seven real-world widely used applications. The 
results show consistent allocation/deallocation patterns present in 
different applications. Especially, we observe that most of the 
allocations fitted a well-defined range of block sizes. Also, we 
found that more than 70% of all dynamically allocated memory 
lasted no more than 0.1 second in the investigated applications. 
These and other findings of this study are useful for research 
works planning synthetic workloads related to dynamic memory 
allocations. 

Keywords—memory management; dynamic allocation; 
characterization; experimental study 

I. INTRODUCTION 
Dynamic memory allocation is one of the most ubiquitous 

operations in computer programs. In general, most 
sophisticated real-world applications need to allocate and 
deallocate, dynamically, portions of memory of varying sizes, 
many times, during their runtime. These operations are 
commonly performed very often, which make their individual 
execution time significantly important. The code responsible 
for implementing the memory allocation routines is called 
memory allocator [1]. 

In [2], the authors present an empirical study comparing 
seven memory allocators. The comparison was based on 
executing a real middleware application, linked to every 
analyzed allocator and under the same workload. The study 
compared the performance of the memory allocators in terms 
of execution time, memory usage, and memory fragmentation. 
Note that this study’s results are relevant only to applications 
with memory usage patterns similar to the middleware used, 
which is predominantly based on small allocation requests (less 
than 64 bytes) performed mainly at the program start time. 

In [3], the same allocators investigated in [2] were 
analyzed, however using a synthetic workload instead of a real 
application. This approach showed flexibility in evaluating the 
allocators under different experimental factors, such as varying 

the size and number of allocations, number of threads, and 
number of machine processors. However, the limitation of the 
study was exactly on the definition of these factors’ levels, 
which according to the authors were chosen mainly based on 
their experiences and not on previous studies.  

Therefore, we searched for published works that could be 
used as baseline in setting these factors. We found no research 
work on the characterization of dynamic memory allocations in 
real-world applications, which could be used as input to set the 
experimental factors and parameters necessary to apply the 
synthetic workload approach proposed in [3] more realistically. 
This lack of experimental data in this area motivated us to 
develop this study. 

Hence, in this paper we aim to contribute to the body of 
knowledge in this area presenting an experimental study on the 
characterization of dynamic memory allocations in seven real-
world applications. By identifying different memory allocation 
patterns, present in different categories of real-world 
applications, experimenters can use it not only for modeling 
and simulation, but also to realistically generate their synthetic 
workloads in experimental studies related to memory 
management. Especially, the observed patterns can be used as 
input for new memory allocator algorithms that can be 
developed exploiting these usage behaviors. The rest of the 
paper is organized as follows. Section II describes the 
methodology adopted in this study, detailing the method and 
materials used. The experimental plan is presented in Section 
III and its results in Section IV. Section V discusses the major 
contribution of this work. Finally, Section VI presents our 
conclusion and final remarks. 

II. METHOD AND MATERIALS 

A. Instrumentation 
In order to capture the dynamic memory allocation 

behavior of real applications, we instrumented their 
allocation/deallocation routines to collect the necessary 
memory usage data in runtime. For this purpose, we adopted a 
less intrusive approach, which did not require changing the 
applications’ source-code. We developed a memory allocator 
wrapper called DebugMalloc. This wrapper intercepts the 
allocation/deallocation calls, collects their parameter values, 
and redirects the original requests to the default allocator (see 
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Fig. 1). Nowadays, the default memory allocator in Linux is 
ptmalloc2 [4]. 

Using our approach, it is possible to collect data from every 
allocation/deallocation operation, in a less intrusive way than 
other tools such as SystemTap [5], Ptrace[6], and Valgrind [7]. 
To execute the DebugMalloc, it is required to dynamically link 
it to the target application. This is done by changing the OS 
environment variable, LD_PRELOAD, to point to the shared 
library containing the DebugMalloc code. 

 

 

Fig. 1. DebugMalloc workflow. 

Once activated, DebugMalloc collects a set of data for each 
allocation and deallocation operation performed by the 
instrumented application. Tables I and II present the 
parameters collected in each allocation and deallocation 
operation, respectively. 

The data collected by DebugMalloc are kept in memory 
during the whole experiment, and stored into a file in the end. 
We adopted this strategy to avoid undesired influences of disk 
access routines on the results. In this work, we did not consider 
the overhead of the adopted instrumentation, given that we 
focused on the memory allocation characterization, regardless 
of the allocation operations’ execution time. Our main goal 
was to understand the dynamically allocated memory usage 
patterns present in the evaluated real-world applications. 

TABLE I.  DATA COLLECTED PER ALLOCATION REQUEST  

Data Description 

Size (in bytes) Allocation size. 

Operation type Type of allocation routine: mallocª, 
calloc, and realloc. 

Time 
(in milliseconds) Allocation request time. 

Address Address of the allocated memory 
block. 

a. The operator new calls malloc internally, thus every use of new was categorized as malloc. 

TABLE II.  DATA COLLECTED PER DEALLOCATION REQUEST  

Data Description 
Time 

(in milliseconds) Deallocation request time. 

Address Address of the memory block to be 
deallocated. 

 

B. Applications 
In this study, we selected seven applications according to 

the following criteria: 

• The application must be widely adopted. 

• The application must run under the Linux operating 
system. 

• The application must be written in C/C++ languages. 
This criterion is required since DebugMalloc was 
developed to intercept calls to the default allocator of 
glibc [4], which is the Linux standard library for 
C/C++ programs. 

• The application must use the default memory 
allocator available at glibc. Some applications do not 
use the default allocator and bring their own allocator. 
DebugMalloc intercepts only requests to the default 
allocator. 

• The application must allow automating its main 
operations. All tests were automated to be performed 
without human intervention, avoiding any 
uncontrolled influence. 

Based on the above-mentioned criteria, we chose 
applications of two different categories: server and desktop. 
We selected two server applications and five desktop 
applications, which are described next: 

1. MySQL: is a widely used relational database 
management server [8], with more than 100 million copies 
distributed. We used the MySQL Community Server 5.6.12. 

2. Cherokee: is a lightweight and high-performance web 
server [9]. Cherokee has been considered one of the best web 
servers in terms of performance, for both static and dynamic 
content [10]. We used its stable version 1.0. Our primary 
choice was the Apache web server [11], however it does not 
use the default memory allocator; thus it could not be used in 
this study.  

3. CodeBlocks: is a cross-platform IDE for C, C++, and 
Fortran [12]. It has been developed since 2005, and we used its 
version 13.2.  

4. VLCPlayer: is a cross-platform media player [13]. It 
has more than 17 years under development; we used the 
version 2.1.4. 

5. Octave: is a high-level interpreted language 
framework for numeric computation [14]. It provides from 
numeric solutions to graphic manipulation, similarly to the 
well-known Matlab software. It has been developed since 
1998, and we used the version 3.8.1. 

6. Inkscape: is a cross-platform editor for vector 
graphics [15]. It has more than 10 years under development 
and we used its version 0.48.4. 

7. Lynx: is a text interface web browser [16] that has 
been developed since 1992. We used the version 2.8.7rel.2. 
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III. EXPERIMENTAL PLAN 
For the characterization of dynamic memory allocations, 

we adopted a typical usage scenario for each selected 
application. For each scenario, we replicated the test 30 times, 
in order to reduce the effects of experimental errors on the 
results. Thus, we used the average and median of the 
replication results in our analyses. Next, we describe each 
workload scenario implemented per application. 

1. MySQL: we used the test database Sakila [17] 
provided with MySQL. Sakila is a functional video rental shop 
database with 22 tables, and it uses the main data structures of 
MySQL, such as views, stored procedures, and triggers. To 
perform queries we used the MySQLSlap [18], an application 
that emulates MySQL clients performing automatically a pre-
determined set of operations on the database. The test scenario 
consisted of three steps: firstly Slap creates the database 
through a single client connection; next it emulates 50 clients 
performing, simultaneously, 36 operations of search, update, 
and delete on the created database; finally, it removes (drops) 
the test database.  

2. Cherokee: we used the Apache bench (ab) tool [19] to 
generate this experiment workload. The ab is a program that 
executes automated access to web pages for web server 
performance evaluation purpose. The test scenario consisted of 
20 clients performing, simultaneously, 50 accesses to the 
Cherokee administration web page.  

3. CodeBlocks: we created a test scenario where the 
CodeBlocks initializes and loads a workspace with its own 
source code. We used the CodeBlocks project (version 13.12), 
which contains almost 20MB of source-code and project 
artifacts; it can be considered a large software project. 

4. VLCPlayer: to characterize the VLCPlayer dynamic 
memory usage, we created two test scenarios. In the first we 
executed uninterruptedly an audio file (5:34 minutes), and in 
the second we executed a high-definition movie video (9:56 
minutes). 

5. Octave: for this experiment we performed the Gauss 
elimination method to scale one tridiagonal matrix of order 50. 
This algorithm is typically used for linear problem solving 
[20], which is one of the main features of Octave.  

6. Inkscape: to characterize the Inkscape dynamic 
allocations we created a test scenario where the editor is 
initialized and loads an image with resolution of 1920x1080 
pixels and size of 280KB. 

7. Lynx: for this characterization Lynx performed 
accesses to a set of five web sites. We chose the web sites by 
selecting the five most accessed web sites from the Internet, 
according to the Alexa Ranking [21]. 

All the above-mentioned characterization experiments were 
conducted in a test bed composed of a multicore computer 
(Intel Core i5 2410M), 6GB of RAM, running the Linux OS 
(kernel 3.11.6-4-desktop) from the OpenSuse 13.1 distribution. 
Fig. 2 shows the processor topology of the computer used in 
our tests. 

 

Fig. 2. Processor topology of the test-bed machine. 

IV. RESULT ANALYSIS 

A. Amount of Allocated Memory 
A high diversity was observed in the amount of allocated 

memory and number of allocations among the evaluated 
applications (see Table III). The amount of memory varied 
between 9MB with 30,000 allocations (Lynx), and 2.4GB 
allocated in more than 12.4 million of allocation requests 
(CodeBlocks). This variation was not a big surprise, given the 
different application types and thus different usage scenarios. 
Coincidentally, the application that allocated the largest 
amount of memory was the same that performed the highest 
number of allocations. However, in the Inkscape test scenario, 
although it had requested more than 12.1 million of allocations, 
the total amount of memory allocated was only 564MB; due to 
the small average of allocated memory size. 

TABLE III.  ALLOCATION BEHAVIOR PER APPLICATION 

Application Number of 
Allocations 

Allocated 
Memory 

(megabytes) 

Average 
size of 

allocation 
(bytes) 

Median 
size of 

allocation 
(bytes) 

MySQL 467,348 686 1,467.40 1,144 

Cherokee 31,727 14 420.13 264 

CodeBlocks 12,412,302 2,493 200.9 104 
VLCPlayer 

(audio) 138,747 335 2,410.82 100 

VLCPlayer 
(video) 1,513,223 1,885 1,245.42 56 

Octave 579,606 100 172.07 32 

Inkscape 12,172,463 564 46.31 32 

Lynx 31,303 9 268.51 24 

B. Allocation Sizes 
We analyzed the size of allocations per application. The 

complete distribution of allocation sizes are shown in Figures 3 
to 10. Note that most of the allocations are grouped in a well-
defined range of sizes. All desktop applications had the 
majority of their allocation sizes until 100 bytes, while the 
server applications, MySQL and Cherokee, had their majority 
of allocation sizes with 1,144 and 264 bytes, respectively. It is 
noteworthy that the VLCPlayer (audio) also had a substantial 
amount of allocations with sizes varying between 1,000 and 
1,230 bytes. All applications presented, in average, 2,336 
different allocation sizes; however, the majority of memory 
allocations were distributed in a set of ten different sizes. The 
ten most allocated sizes represented 75.2% of the total amount 

95

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:48:03 UTC from IEEE Xplore.  Restrictions apply. 



of allocations, ranging from 50% (in Lynx) to 92% (in 
Cherokee). Fig. 11 shows these findings. 
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Fig. 3. Distribution of allocation sizes in MySQL. 
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Fig. 4. Distribution of allocation sizes in Cherokee. 

0 200 400 600 800 1000 1200

Allocated Size (in bytes)

0
2
4
6
8

10
12
14

C
um

ul
at

iv
e 

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

 

Fig. 5. Distribution of allocation sizes in CodeBlocks. 
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Fig. 6. Distribution of allocation sizes in VLCPlayer (audio). 

0 200 400 600 800 1000 1200

Allocated Size (in bytes) 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

C
um

ul
at

iv
e 

nu
m

be
r o

f
al

lo
ca

tio
ns

 (m
ill

io
ns

)

 

Fig. 7. Distribution of allocation sizes in VLCPlayer (video). 
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Fig. 8. Distribution of allocation sizes in Octave. 
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Fig. 9. Distribution of allocation sizes in Inkscape. 
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Fig. 10. Distribution of allocation sizes in Lynx. 
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Fig. 11. Percentage of the ten most allocated sizes per application. 

The Table IV presents the ten most allocated sizes per 
application. The values inside the parentheses represent the 
percentage of a given allocation size with respect to the total 
amount of allocations. As can been seen, every application has 
its own set of most allocated sizes; some of these sizes are 
observed in different applications. For example, allocations of 
24 and 40 bytes appeared in the most allocated sizes for five 
different applications. The second most recurrent allocation 
sizes are 16, 32, 64 and 72 bytes, which appeared in three 
different applications. 
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TABLE IV.  TEN MOST ALLOCATED SIZES PER APPLICATION 

Ranking 
Allocated Size in bytes and Percentage of Allocations  

MySQL CodeBlocks VLCPlayer 
(audio) 

VLCPlayer 
(video) Octave Inkscape Lynx Cherokee 

1 1144 (60%) 104 (58%) 72 (14%) 32 (14%) 16 (14%) 32 (14%) 16 (16%) 264 (79%)

2 128 (9%) 168 (7%) 9392 (13%) 56 (10%) 32 (13%) 8 (11%) 5 (6%) 21 (3%) 

3 280 (3%) 568 (5%) 1229 (11%) 72 (7%) 24 (11%) 1 (9%) 40 (6%) 61 (2%) 

4 288 (3%) 128 (4%) 1200 (8%) 40 (5%) 48 (8%) 30 (9%) 100 (5%) 27 (2%) 

5 8160 (3%) 232 (3%) 1011 (7%) 976 (5%) 40 (7%) 12 (5%) 24 (5%) 51 (1%) 

6 376 (2%) 360 (3%) 40 (6%) 86 (4%) 64 (6%) 14 (5%) 32 (3%) 22 (1%) 

7 64 (2%) 296 (3%) 44 (3%) 42 (4%) 27 (3%) 47 (5%) 3 (3%) 179 (1%) 

8 632 (2%) 40 (2%) 16 (3%) 24 (4%) 26 (3%) 45 (5%) 7 (2%) 1155 (1%) 

9 240 (1%) 64 (1%) 24 (3%) 8368 (3%) 512 (3%) 51 (5%) 2 (2%) 397 (1%) 

10 24 (1%) 424 (1%) 907 (2%) 80 (3%) 28 (2%) 53 (5%) 72 (2%) 2126 (1%) 
             The highlighted sizes appeared in at least three applications. 

 
C. Allocation Routines 

We also analyzed the usage percentage of the three main 
allocation routines: malloc, calloc, and realloc. Each routine 
performs memory allocation in a different manner, and its use 
depends on how memory is used and thus varies according to 
the application needs. Note that the C++ new operator 
internally calls malloc. 

In this study, the most frequent allocation routine observed 
was malloc, which was used in 87.9% of all allocation 
requests, followed by realloc (6.07%) and calloc (6.03%). 
Only VLCPlayer and Lynx used calloc and realloc in a higher 
extent (see Table V). 

TABLE V.  USAGE PERCENTAGE OF ALLOCATION ROUTINES PER 
APPLICATION 

Application malloc realloc calloc 

MySQL 99.91 0.06 0.03 

Cherokee 87.49 12.38 0.13 

CodeBlocks 92.51 7.18 0.31 

VLCPlayer (audio) 75.40 4.71 19.89 

VLCPlayer (video) 79.72 5.49 14.79 

Octave 99.71 0.08 0.21 

Inkscape 95.61 2.93 1.46 

Lynx 72.84 15.72 11.44 

D. Memory Deallocation 
Memory deallocation is an important factor in the 

application’s behavior from the dynamic memory allocation 
viewpoint. Table VI presents the number of deallocation 
requests and the percentage of deallocation requested to null 
pointers (addresses). The execution of deallocation requests to 
null pointers is a software defect and not all allocators handle 
properly this case; it is not unusual to observe application 
failures caused by this defect. 

The experiments showed that MySQL database was the 
application with the higher number of null-pointer 
deallocations (approx. 12%), followed by VLCPlayer (audio) 
(2.37%), CodeBlocks (2.27%), and VLCPlayer (video) 
(2.05%). The remaining applications had a rate of null-pointer 
deallocations less than 1%. Note that these experiments were 
never designed to detect memory leaks, especially because in 
some cases the applications were finished without freeing the 
last portion of their memory. Therefore the analysis of unfreed 
allocations is beyond the scope of this work.  

TABLE VI.  DEALLOCATION BEHAVIOR PER APPLICATION 

Application Number of 
deallocations 

% of null-pointer 
deallocations 

MySQL 493,965 11.80 

Cherokee 29,017 0.02 

CodeBlocks 11,001,975 2.27 

VLCPlayer (audio) 120,051 2.37 

VLCPlayer (video) 1,397,594 2.05 

Octave 464,206 0.96 

Inkscape 11,430,033 0.11 

Lynx 14,234 0.84 

E. Retention Time 
Retention time of an allocated memory block is the time 

interval between its allocation and deallocation. It is an 
important factor to be considered in the design of memory 
allocators, since it has a significant influence on heap memory 
fragmentation; one of the main problems in dynamic memory 
management [22]. Therefore, characterizing the retention time 
of real applications is very important to understand their 
memory allocation behaviors. In order to analyze the retention 
time for each memory block allocated by the investigated 
applications, we classified the allocations’ retention time into 
three categories: 
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1. Short duration allocation: allocation that has a 
retention time less than 100 milliseconds. 

2. Medium duration allocation: allocation that has a 
retention time between 100 milliseconds and 1 second.  

3. Long duration allocation: allocation that has a 
retention time higher than one second. Usually, this type of 
allocation represents data structures that remain allocated 
during the whole application execution time. 

TABLE VII.  AVERAGE EXPERIMENT EXECUTION TIME PER APPLICATION 

Application Avg. execution 
time (seconds) 

Median execution 
time (seconds) 

MySQL 25.34 25.34 

Cherokee 14.12 14.05 

CodeBlocks 58.09 58.09 

VLCPlayer (audio) 332.17 332.17 

VLCPlayer (video) 593.25 593.20 

Octave 7.63 7.68 

Inkscape 67.23 67.08 

Lynx 26.04 26.04 

 

It is important to analyze the retention time taking into 
consideration the time spent for each test scenario (Table VII). 
Even in the shortest execution time, obtained with Octave (7.63 
seconds), the three categories of retention time could be 
analyzed without any loss. Our experimental results indicated 
that, in average, 71.6% of the memory allocations were from 
the short duration category, and 7.85% were classified as 
medium duration, i.e., almost 80% of the allocations were 
deallocated within one-second interval (see Fig. 12). For the 
server applications, this average is higher (86%). Only 
VLCPlayer (video) and Lynx had their long duration 
allocation rate higher than 30%. These findings suggest that 
the majority of dynamic memory allocations are for temporary 
use, not lasting too long during the application execution. 
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Fig. 12. Percentage of short, medium, and long allocation’s retention time per 
application. 

The long duration allocations were, in average, 20.51% of 
the memory allocations executed. Based on the observed 
patterns for long duration allocations, we classified the 
applications into two behaviors: 

1. Growing usage: the application gradually increments 
the number of long duration allocations along its execution 
time. This behavior is found in applications that have a 
growing constant rate in the number of long duration 
allocations. In this case, part of the allocations is not 
deallocated in short time, increasing the amount of memory in 
use. 

2. Plateau: the application performs the majority of long 
duration allocations in the first set of allocations requests. This 
behavior is evidenced by a peak of the long duration 
allocations in the first set of operations and then it remains 
approximately constant, indicating that most of the allocations 
after the peak have a short or medium retention time. 

Due to the large number of allocation/deallocation 
operations performed during the experiments, we calculated 
the amount of long duration allocations accumulated for each 
group of 1,000 successive operations (allocations or 
deallocations). Figures 13 to 20 show these results. We found 
that four applications fit in the Growing usage pattern, which 
were CodeBlocks (Fig. 13), Lynx (Fig. 14), Octave (Fig. 15), 
and VLCPlayer (video) (Fig. 16). The remaining applications 
presented the Plateau pattern: VLCPlayer (audio) (Fig. 17), 
MySQL (Fig. 18), Cherokee (Fig. 19), and Inkscape (Fig. 20). 
It is worth mentioning that, in Fig. 18, the decreasing of the 
amount of long duration allocations is the consequence of 
dropping the test database, as described in Section III. 
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Fig. 13. CodeBlocks long duration allocation pattern (Growing Usage). 
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Fig. 14. Lynx long duration allocation pattern (Growing Usage). 
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Fig. 15. Octave long duration allocation pattern (Growing Usage). 
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Fig. 16. VLCPlayer (vídeo) long duration allocation pattern (Growing Usage). 
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Fig. 17. VLCPlayer (audio) long duration allocation pattern (Plateau). 
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Fig. 18. MySQL long duration allocation pattern (Plateau). 
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Fig. 19. Cherokee long duration allocation pattern (Plateau). 
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Fig. 20. Inkscape long duration allocation pattern (Plateau). 

V. DISCUSSION 
This work provides experimental evidences on dynamic 

memory allocation/deallocation patterns in selected real-world 
applications. These evidences contribute to plan more realistic 
synthetic workloads related to memory management, and also 
for the improvement of memory allocator algorithms.  

The first contribution of this paper is related to the amount 
of memory allocations performed by the tested applications. 
The results show that the applications requested between 30 
thousands and 12.5 million allocations. Given that we adopted 
test scenarios considering the normal usage of each application, 
in a moderate level, one could use these values as baselines for 
synthetic workloads in experiments involving similar 
application categories (e.g., web browsers, database and web 
servers, media players, etc.).  

Another contribution of this work is the consistent pattern 
found in the distribution of allocation sizes. Although the 
tested applications allocated 2,336 different sizes, on average, 
the majority of allocations were concentrated in a small set of 
different sizes. The experimenter must consider this pattern 
when planning synthetic workloads. Particularly, it is important 
to highlight that many synthetic workload generators currently 
used to test memory allocators usually set the allocation sizes 
in random manner (e.g., [3]), or simply adopt a constant size 
for all allocations (e.g.,[23], [24]). The experimental findings 
in this study suggest that the mix of these two approaches can 
lead to a much more realistic workload. Essentially, it should 
be done by fixing a given range of allocation sizes applied to 
the majority of memory allocations, and randomly choose the 
size of the remaining set of allocation requests. 

Even though the set of the most allocated sizes were 
distinct for each investigated application, the distribution of 
allocation sizes can be exploited to improve the performance of 
memory allocators, e.g., by using particular data structures to 
meet this specific set of allocated sizes; also by adopting cache 
mechanisms applied to memory blocks that fit the pattern of 
most allocated sizes. We know from the literature that some 
allocators adopt cache mechanisms for smaller requests (e.g., 
[4], [23]), but the present study suggests that these 
implementations could be improved by targeting different 
ranges of allocated sizes in addition to smaller ones. 

Another interesting finding related to allocation sizes relies 
on the different patterns found for Desktop and Server 
applications. Desktop applications allocated smaller sizes more 
frequently than Server applications. This result can be used not 
only to generate differentiated workloads for Desktop and 
Server applications, but also to design specific memory 
allocators for these application categories. Nowadays, it is 
common to use the same memory allocator algorithm for 
Desktop and Server applications, interchangeably. For 
example, in Linux many Server applications (e.g., MySQL) 
and Desktop applications (e.g., VLCPlayer) use the default 
glibc memory allocator, i.e., ptmalloc2. 

The results also showed that the malloc was the most used 
routine for memory allocations. This outcome was not far from 
the expected, since malloc is the most straightforward 
allocation routine and also because it is called by the new 
operator. However, 4 out of 8 tested applications had a 
significant share of their dynamic memory allocation requests 
using calloc and realloc routines. We found this behavior in 
both server (Cherokee used realloc in 12% of its allocations) 
and desktop applications (Lynx used calloc/realloc in 27% of 
its allocations). This result could be used in experiments to set 
up the usage distribution of the allocation routines in order to 
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allow the synthetic workload generator to test, in a more 
realistic way, the three routines implemented by memory 
allocators being investigated.  

The pattern found related to the retention time of allocated 
memory blocks is another important contribution of this paper. 
The experimental results indicated that 71.6% of the memory 
allocated was retained for less than 0.1 second. This indicates 
that the majority of the requests were used in a small scope of 
code. Approximately 20% of the allocations were retained for 
more than one second. This type of allocation usually 
represents data structures that are kept in memory until the end 
of the experiment. In case of long duration allocations, the 
results also indicated two clear patterns: the Growing Usage 
and the Plateau. Not only experimental works, but also 
modeling and simulation studies could benefit of these results. 

We highlight that some of the synthetic workloads used to 
evaluate memory allocators (e.g., [3], [23], [24]) implement a 
loop that allocates and deallocates memory blocks immediately 
after their use. This means that their retention of memory 
blocks behaves differently as observed in the real applications; 
usually this approach is adopted for its simplicity. We believe 
that a synthetic workload planned to accurately emulate the 
behavior of real applications should consider the patterns found 
in this study with respect to the retention time of memory 
blocks. One possible method could be to classify the blocks 
into short duration and long duration, based on their retention 
times. Hence, the short duration blocks could be deallocated 
right after their use, and the long duration blocks could be 
deallocated at the end of the experiment. To emulate the 
Growing Usage and Plateau patterns, a synthetic workload 
generator could distribute the long duration blocks in the 
beginning of the experiment (following the Plateau pattern) or 
uniformly distributing them during the whole experiment 
(similar as the Growing Usage pattern). This method may 
introduce some additional complexity to synthetic workload 
generators; however, we believe that it contributes to have 
synthetic workloads a step forward to a more realistic test 
scenario. 

Potential extension of this study should be the increasing in 
the number and variety of tested applications, analyzing the 
new results not only with respect to the patterns observed in 
this study, but also looking for new patterns that eventually 
may arise as a result of a larger sample with different 
applications. Another important extension would be the 
correlation analysis between the observed memory allocation 
patterns and their effects on the heap memory fragmentation; 
the design of new memory allocators can benefit from this 
analysis in order to select better allocation strategies and data 
structures to mitigate this relevant memory-related problem.  

VI. FINAL REMARKS 
In modelling, analysis and simulation of computer 

applications, dynamic memory allocations take a very 
important role, given their ubiquitous nature in virtually all 
categories of computer programs.  

The lack of experimental studies that characterize the 
behavior of dynamic memory allocations, based on real-world 
applications, motivated us to conduct this work. 

The findings discussed in this paper, especially the memory 
usage patterns consistently found in different applications, can 
be used by experimenters as a baseline to improve their 
synthetic workload plans towards more realistic test scenarios.  

As a concrete example, these results have been used in a 
work in progress related to the performance evaluation of 
several widely used memory allocator algorithms. We use the 
memory patterns found in this study to create different 
synthetic workloads for dynamic memory usage in order to 
evaluate the allocators’ performance from different perspective 
(e.g., response time, memory usage, memory fragmentation). 
This is part of an ongoing larger project that aims to design a 
new multicore general-purpose user-level memory allocator.  
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