
A Systematic Differential Analysis for Fast and
Robust Detection of Software Aging

Rivalino Matias Jr.∗, Artur Andrzejak†, Fumio Machida‡, Diego Elias∗, Kishor Trivedi§
∗Federal University of Uberlandia, UFU, Uberlandia, Brazil

†Heidelberg University, Heidelberg, Germany
‡NEC Knowledge Discovery Research Laboratories, Kawasaki, Japan

§Duke University, Durham, USA

rivalino@fc.ufu.br, artur@uni-hd.de, f-machida@ab.jp.nec.com, diegoelias@comp.ufu.br, ktrivedi@duke.edu

Abstract—Software systems running continuously for a long
time often confront software aging, which is the phenomenon
of progressive degradation of execution environment caused
by latent software faults. Removal of such faults in software
development process is a crucial issue for system reliability. A
known major obstacle is typically the large latency to discover the
existence of software aging. We propose a systematic approach
to detect software aging which has shorter test time and higher
accuracy compared to traditional aging detection via stress
testing and trend detection. The approach is based on a differ-
ential analysis where a software version under test is compared
against a previous version in terms of behavioral changes of
resource metrics. A key instrument adopted is a divergence chart,
which expresses time-dependent differences between two signals.
Our experimental study focuses on memory-leak detection and
evaluates divergence charts computed using multiple statistical
techniques paired with application-level memory related metrics
(RSS and Heap Usage). The results show that the proposed
method achieves good performance for memory-leak detection
in comparison to techniques widely adopted in previous works
(e.g., linear regression, moving average and median).

Index Terms—anomaly detection, memory leak, software aging

I. INTRODUCTION

The software aging phenomenon has been observed in

many software systems that run continuously for long time

[15]. This phenomenon is often caused by software faults,

so-called aging-related bugs, that leads to the accumulate

errors during the software execution and causes undesirable

consequences including performance degradation or system

failures, after long time of execution [11]. A well-known

example of software aging effects is the memory leaking,

which is caused by software faults in the application memory

management usage, and it leads to memory resource depletion

in a system running uninterruptedly for a long period of time

[20]. Memory leak is one of the most prevalent software aging

problems reported in the literature, and thus the experimental

study conducted in this paper is focused on it.

In the common software life cycle, complete removal of

aging-related bugs in the development phase is very diffi-

cult and sometimes unfeasible. Although techniques to verify

source code help to improve software reliability, they are not

perfect in removing all aging-related faults, especially those

related to memory leaks given that their aging effects only

manifest during the run time and most of the time under par-

ticular workload conditions. Even when developers carry out

system tests covering a large extent of the software operational

profile, relatively short testing time is not enough to expose the

potential aging effects caused by memory leaks [26]. Indeed, it

has been observed that relatively short test durations increase

the rate of false alarms of aging when using resource depletion

metrics in conjunction with detection techniques based on

trend analysis approaches, commonly adopted in the software

aging literature [22]. It is a fundamental challenge to detect

the existence of software aging in a short period of test time,

especially when dealing with memory leaks.

In this paper, we propose a systematic approach to detect

software aging with a shorter test duration and with high

accuracy. Our approach is designed for a system test based on

differential software analysis [18], [19], i.e. the comparison

between a new software version under test and its previous

stable version that has passed the test and thus is considered a

robust version of the software. System metrics affected by the

software aging effects under study, in this case memory leaks,

are monitored periodically during the software test. Their

observed values are then analyzed following a data analysis

protocol that compares them with a baseline signal obtained

by executing the robust (stable) version of the software. When

the deviation of the target signal (obtained by monitoring the

new version) from the baseline signal becomes significant,

we suspect the existence of software aging effects in the

new version under test. In order to quantify the deviation

from the baseline signal, we introduce a divergence chart, in
which the normalized difference between the target signal and

an upper control limit of the baseline signal is plotted as a

function of time (see Section III-D). Since the computation

of the divergence chart is applicable to any type of signal

from time-series data, the proposed approach can be combined

with different data analysis techniques (e.g., linear regression,

moving averages, and statistical process control techniques).

By comparing various divergence charts against each other,

we can identify the most effective technique to be used for

the rapid detection of aging for a given scenario.

The contribution of this paper is twofold. The first contribu-

tion is the proposal of a systematic approach to detect software

aging related to memory leaks during the software test phase.

2014 IEEE 33rd International Symposium on Reliable Distributed Systems

1060-9857/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDS.2014.38

311

2014 IEEE 33rd International Symposium on Reliable Distributed Systems

1060-9857/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDS.2014.38

311

2014 IEEE 33rd International Symposium on Reliable Distributed Systems

1060-9857/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDS.2014.38

311

2014 IEEE 33rd International Symposium on Reliable Distributed Systems

1060-9857/14 $31.00 © 2014 IEEE

DOI 10.1109/SRDS.2014.38

311

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

This approach combines differential software analysis with

advanced statistical techniques for anomaly detection. We

evaluate the effectiveness of our approach through controlled

experiments, where various levels of workloads and aging

rates are considered. The experiments show that it can detect

aging more accurately and within shorter test durations than

traditional approaches (e.g., [4], [8], [9], [21]) which are

based on stress testing, regression models and trend detection

techniques. The second contribution is the experimental study

itself, focusing on memory leak detection. We compare the ac-

curacy of using a heap-oriented metric against an application-

oriented metric. So far, many previous researches have used

these metrics, especially the latter, in an adhoc manner,

without a more detailed investigation. Based on the results

presented in [22], we further investigate the theoretical aspects

of memory leak mechanism and show experimental results of

memory leak detection.

The rest of the paper is organized as follows. Section II

describes the mechanism of memory-related software aging

from a theoretical viewpoint. Section III presents the pro-

posed systematic approach to detect software aging caused by

memory leaks using divergence charts. Section IV describes

our experimental study focused on memory leak detection,

and Section V presents the experimental results. Section VI

discusses the related research, and finally Section VII states

our conclusions.

II. MEMORY LEAK DETECTION

As a representative example of software aging, in this paper

we address the memory leak problem. Memory leak is the

most investigated software aging issue because of its impact on

system availability as well as the large number of occurrences

found in real systems. In this section we describe two key

aspects to be considered for any online memory leak detection

approach, which are the system metrics to be monitored and

the threshold values to reliably decide the existence of memory

leak.

A. System metrics (aging indicators)

In order to detect memory leaks in a running program,

application-specific metrics should be used instead of system-

wide metrics [23], [20], [22]. RSS (resident set size), VSZ

(virtual memory size), HSZ (heap size), and HUS (heap

usage) are examples of such application-specific metrics in the

Linux operating system. These are general metrics and similar

ones can be found in different operating systems, although

sometimes they are referred to by different terminologies (e.g.,

in Windows OS family the equivalent to RSS is named WS -

working set).

The RSS is the working set size of the monitored process. It

considers only parts of the process (text, data, stack, and heap)

currently loaded in main memory. VSZ represents the total

amount of virtual memory occupied by the process, including

in-memory and on-disk pages. HSZ and HUS are, respectively,

the total amount and the currently used amount of the process’

heap, which include both in-memory and on-disk pages. It is

not obvious which metric is the most important aging indicator

among these for detecting memory leaks. Although previous

approaches have used these application-specific metrics, there

is no previous study comparing them in terms of their efficacy

for aging detection. In order to decide which metrics to use

in our experimental study (see Section IV), we compare their

efficacy from both theoretical and practical viewpoints. In the

rest of this section we present the theoretical analysis, and in

Section V we present the results obtained through controlled

experiments.

We compare in the following the applicability of each metric

mentioned above; most of them have been used in the software

aging literature. The RSS is not only related to the heap area,

but also to other resident (in-memory) parts of the monitored

process, such as text, data and stack. If the size of these other

parts varies or increases significantly (more than the amount

of leaks), they may dominate the RSS value and this could

cause a significant number of false positive alarms. The HSZ

is lesser noisy than RSS, because it is related only to the

heap - where memory leaks take place. However, this variable

does not tell us the complete story, since it cannot capture

the amount of leaks inside the heap. Similar to RSS, the VSZ

captures not only the heap but also other process parts. HUS

captures only the memory used inside the heap; differently

from HSZ, in this case only allocated blocks are counted

(not free space). However, HUS does not distinguish from

usable (active/inactive) or unusable (leaked) allocated blocks.

Of course, the best choice would be measuring only the leaked

blocks, which is completely noise free. However, it is currently

not practical to monitor for majority of real applications, due

to the high overhead it could cause at run time.

From this investigation, our approach considers the use of

HUS as a less noisy and standard system metric that may be

used in different OS platforms. We submit that it can capture

the amount of memory leak more efficiently than other widely

adopted aging indicators (or system metrics) can. Since the

RSS is currently extensively used in experimental research in

this area, in Section V-D we compare the results obtained using

both RSS and HUS.

B. Threshold on memory leak detection

In addition to selecting the adequate system metrics to be

monitored, it is also necessary to specify how their values are

used to detect the presence of memory leaks. Many previous

papers (e.g., [10]) have adopted a trend-based approach for

this purpose. In general, after monitoring the selected system

metric(s) for certain period of time they apply trend analysis

techniques (e.g., Mann-Kendall tests, Sen’s slope, regression

analysis) to discover increasing trends in memory usage. How-

ever the trend detection itself does not ensure the existence

of memory leaks, since the size of the process’ heap may

be increasing not only because memory leaks exist, but also

due to the application’s memory usage pattern [22]. Therefore,

trend detection itself is not enough to support a safe decision

for this problem, even if it is calculated with high statistical

confidence.

312312312312

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Moreover, some studies (e.g., [5], [10]) have assumed that

while applying a constant workload, observing a consistent

increase of the process size, implies the existence of memory

leaks. The fact of using a constant workload is not a guarantee

of a non-increasing usage of memory in a leak-free applica-

tion. An increasing of heap size could be the consequence of

new memory pages being added to the heap pool, and not

necessarily due to memory leaks, which can be observed with

both varying and constant workloads.

Thus, in order to detect the presence of memory leaks in

a target application, we need to distinguish the monotonicity

property of the memory leaks from the natural increase of

the application’s heap size. Hence, we need to compare the

heap usage pattern of a target application against a baseline

pattern, which we know is representative of the expected

natural increase in the application’s heap size. The monitored

target application is a new version of the software being tested,

and the comparative baseline is obtained through monitoring

the latest stable version of the software, which is considered a

robust version that has been cleared in previous tests and thus

accepted to be deployed in production.

In order to implement the above-mentioned procedure, we

advocate that, among the most used metrics so far, HUS is the

most effective, since it is the lesser noisy variable. Based on

monitoring this metric, we can capture the heap usage pattern

of the target application and compare it against the baseline

pattern. To this end, a comprehensive comparative analysis is

required. In the next section, we propose a systematic approach

to carry out system tests in order to detect software aging

caused by memory leaks, based on a judicious comparative

method.

III. SYSTEMATIC APPROACH TO AGING DETECTION

In this section, we present our general approach to detect

software aging in a target software. The approach consists of

three steps: i) measurements from a target software version

under test, ii) processing of the collected data for statistical

analysis, and iii) detecting unexpected resource usage patterns.

The third step is based on the comparison of the collected data

from step i, against baseline data obtained from a previous

stable version of the software under test. Since our approach is

independent of system metrics and data processing techniques,

it is a robust software aging detection that can be applied to

several combinations of metrics and techniques in a systematic

way.

A. Overview

Figure 1 shows an overview of the steps and instrumentation

used in our proposal. The software version under test (SVUT)

is installed on a given execution environment, in which the

selected test workload is assigned by the aging test controller.

In the first step, the values of selected system metrics are

collected periodically by the monitoring instrumentation. The

collected data is organized as one time series per monitored

metric.

Figure 1. Aging detection workflow

In the second step, the obtained time series are used to

compose target signals by means of different data processing

techniques such as moving average, moving median, Hodrick-

Prescott filter, and so on. The data analysis can be performed

in parallel among different combinations of metrics and pro-

cessing techniques. In the third step, the obtained target signal

is compared against the baseline signal for detecting abnormal

divergence between the two signals. For this purpose, a

divergence chart is computed and used to detect significant

changes in the SVUT resource usage pattern; e.g., significant

and consistent memory usage increase in comparison with

the baseline. Since the computation of the divergence chart is

independent of specific data processing techniques, the results

of change detections are comparable to each other and thus

we can make more reliable decisions within a short test time.

The following subsections detail each step of this approach.

B. Measurements

Measurements are conducted for metrics that potentially

indicate software aging effects on the software under test. As

discussed in Section II-A, selecting appropriate system metrics

is important for aging detection. Especially for memory leak

detection, RSS and HUS are relevant metrics among other

system-level metrics (e.g., free memory and swap space). In

the Linux operating system, several application-specific met-

rics, such as RSS, are available by simply accessing /proc file

system or using system programs like vmstat, and ps. For more

specific metrics, such as HUS, that require the application’s

heap information, it is necessary to use proper monitoring

tools such as DTrace (Solaris) [7], Detours (MS Windows)

[16], and SystemTap (Linux) [17]. Periodic monitoring of

these system variables can be automated by regular shell script

programming along with proper instrumentation. The collected

values are organized as time series that are used for generating

the target signals by data processing techniques.

C. Data processing

The performance of the aging detection are affected mainly

by factors such as the monitored metrics and data processing

techniques adopted. Different systems and types of aging

effects would require specific data processing techniques to

313313313313

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Table I
SYMBOLS OF METRICS AND PROCESSING TECHNIQUES

Symbol Type Meaning
RSS Metric Resident set size
HUS Metric Heap usage
LR Trend model Rolling linear regression
MA Trend model Moving average
MM Trend model Moving median
HP Trend model Hodrick-Prescott filter
SH SPC technique Shewhart control chart
EW SPC technique Exponentially weighted moving average
CS SPC technique Cumulative sum (CuSum)

be applied for the time series observed in the target system.

Therefore, our approach is general enough to support the use

of many data analysis techniques concurrently in a common

set up.

In this paper, we cover four different statistical methods

for trend analysis, which are rolling linear regression (LR),

moving average (MA), moving median (MM), and Hodrick-

Prescott filter (HP). Moreover, we use three statistical process

control (SPC) methods, namely Shewhart control chart (SH),

exponentially weighted moving average (EW), and cumulative

sum (CS). Table I summarizes the abbreviated terms we use

hereafter.

The first four methods in Table I are mainly used for

smoothing and fitting a potential trend. Linear regression (LR)

is the most commonly used approach to model the relationship

between two variables by fitting a linear equation to observed

data. Here we use a rolling linear regression, where line fit is

made over data in a sliding window. Moving average (MA)

[13] is applied to time series data to smooth out short-term

fluctuations and highlight longer-term trends or cycles. If the

time series data contains outliers or surges, moving median

(MM) [13] gives a more robust estimate of the trend. When

the data is assumed to consist of trend and cycles, the Hodrick-

Prescott filter [14] is useful to extract the trend from time

series containing cycle components. The effectiveness of HP

filter for software aging detection was studied in [31] as well.

The last three entries in Table I are SPC techniques. To the

best of our knowledge, this is the first paper that evaluates SPC

techniques applied to software aging detection. We studied

and selected three SPC control chart techniques [27] to use

in this paper: Shewhart control charts (SH), Exponentially

weighted moving average (EW), and Cumulative sum (CS).

SH charts are appropriate to capture large shifts in the process

mean (≥ 1.5σ), while CS is suitable to detect small shifts

(< 1.5σ). EW is able to detect both small and medium to

large shifts [27]. In addition to covering all our needs in terms

of shift size detection, the three above mentioned techniques

are mature and well tested, making their implementation for

automatic aging detection very appropriate. We adjust the

parameter values for the three SPC techniques as follows. For

CS and EW, we set their parameters to have comparable 3-

sigma Shewhart’s (SH) control limits. In a SH control chart

with 3-sigma control limits, there is approximately a 0.27%

probability of a value falling outside of the control limits under

normal behavior. In this case, false alarms are expected to

occur on average once every 370.37 (1/0.0027) observations.

Based on the algorithms described in [27] and [29], we found

this parametrization relationship and used in our experimental

study. The parameter values for each SPC model adopted are:

SH (3σ, d2 = 1.128), CS (k = 0.5, h = 4.77), and EW

(L = 2.701, λ = 0.1). For SH, the monitored time series is

directly used as the target signal. The target signal for EW is

obtained by computing the exponential moving average of the

original data, while the target signal for CS is generated by

the CuSum algorithm using the mean and standard deviation

of the baseline signal [27].

D. Change detection

Change detection attempts to find significant difference

between baseline signal and target signal from current SVUT;

both signals are created with the same metric and data pro-

cessing technique. For this purpose, we first compute a series

of divergence values, where each value relates to a normalized

difference between the target and baseline signals, at the same

sampling rate, from the test start time.

1) Computation of divergence values: To obtain the diver-

gence values we compute, from the baseline and target signals,

three derived time series: target signal {ft}, lower {Lt} and

upper {Ut} bounds of a control limit interval. These bounds

indicate the range of the filtered target signal. The computation

of series {ft}, {Lt}, and {Ut} depends on the individual

technique adopted (explained below). For a fixed time t (i.e.,

corresponding elements of the three series), the divergence

value is computed by (
ft − Ut

Ut − Lt

)+

(1)

where X+ is X if X ≥ 0 or 0 otherwise. Evidently, if the ft
is within the limit interval (or below), we get 0, otherwise the

distance of ft from the upper bound in units being the width

of the control interval. The latter property is the normalization

allowing uniform thresholds for all techniques.

For the trend-based detection techniques (LR, MA, MM, HP

- see Table I), the target signal {ft} is computed by applying

the respective smoothing function to the monitored time series,

e.g., moving average to RSS or HUS. The bounds of the

control limits are obtained by computing rolling standard

deviation of the baseline signal, and adding it (for {Ut})
or subtracting (for {Lt}) from the smoothed base signal

(smoothed by the same technique as the target signal).

For the SPC techniques (SH, EW and CS) the approach

is a bit more complex. In the case of CS, {ft} is obtained

by applying the CuSum algorithm to a series obtained by

Z-normalizing the observed time series with the mean and

standard deviation of the baseline signal. The control interval

in this case is constant [−4.77σ, 4.77σ].
In the case of SH, {ft} is the target signal itself, and the

upper/lower control bounds are obtained from the baseline

signal. For this purpose we add to the mean of the baseline

signal (for {Ut}) or subtracts from it (for {Lt}) the term

314314314314

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Term Definition
Divergence Event Event fi+5 of subseries fi, . . . , fi+5,

where fi < α and all fi+1, . . . , fi+5 ≥ α
DivFirstTime Time of occurrence of first divergence event
DivLastTime Time of occurrence of last divergence event

DivNumEvents Number of divergence events after DivFirstTime

Table II
TERMS AND METRICS ASSOCIATED WITH DIVERGENCE SERIES

3MR/d2, where d2 value is shown in Section III-C, and MR
is the average of moving ranges, MRi, given by

MR =
1

m

m∑
i=1

MRi with MRi = |fi − fi−1| . (2)

For EW, the target signal is obtained by the exponential

moving average of the original time series, and the upper/lower

bounds are computed by

Ut = μ0 + Lσ

(
λ

(2− λ)

[
1− (1− λ)

2t
])0.5

(3)

Lt = μ0 − Lσ

(
λ

(2− λ)

[
1− (1− λ)

2t
])0.5

, (4)

where 0 ≤ λ ≤ 1 is a constant, L is the width of the control

limits in number of standard deviations.

2) Divergence chart: Our aging detection approach is car-

ried out according to the following protocol. Assume that

the current divergence value fi is below a given threshold

value α. When a sequence of five consecutive values, fi+1 to

fi+5, are above or equals the threshold α, we consider that a

divergence event has occurred. We associate this event with

the sampling time of fi+5. In other words, in a sequence of

six consecutive divergence values, if the first one is below a

threshold, and all others are above it, the last one is flagged

as a divergence event. In Figure 2, both samples labeled with

“5” are divergence events. The series of divergence values and

the threshold constitute the divergence chart.
The choice of five consecutive values came from the SPC

theory, based on the probability of false alarms for a given

control limit range. In preliminary analysis we observed that

for higher values (e.g., 10) the quality of the results does not

change significantly. Due to normalization of divergence val-

ues, we can use a common threshold for all metric/technique

combinations. In our experimental study we set it to 0.5,

given that this value was found to be suitable by preliminary

experiments, resulting in a good balance between detection

latency and robustness.

To evaluate and compare different metrics/techniques com-

binations, we introduce the following concepts. The time of

the first divergence event is called DivFirstTime. Essentially,
this is the earliest indication of aging effects and its value

is dependent on the latency of a combination (technique and

metric). Note that the corresponding event may be a false

alarm, and more divergence events could occur afterwords.

Figure 2. A divergence chart and associated metrics. Both events labeled with
“5” are divergence events. There is just one such event after time DivFirstTime
(namely at DivLastTime), and so DivNumEvents = 1.

We estimate the robustness of a metric/technique combi-

nation by DivNumEvents that is the number of divergence

events after DivFirstTime. DivNumEvents obviously quantifies

the number of false alarms. Since software aging progresses

over time, the occurrences of false alarms are expected to

disappear after a certain amount of test time. This gives

rise to another metric: DivLastTime, which is the time of

the last divergence event. Thus, an ideal metric/technique

combination would have DivNumEvents = 0 and DivFirstTime
= DivLastTime. The higher is the spread between DivFirstTime
vs. DivLastTime and/or larger DivNumEvents, the less robust

is the given combination. Table II summarizes the introduced

terms.

Note that values of DivLastTime and DivNumEvents are

available only after a sufficiently long minimal test execution

time. This minimal test time must be fixed in advance depend-

ing on the system under test (see Section IV-A). Terminating

test execution earlier and adaptively (e.g. after first occurrence

of DivFirstTime or a certain number of DivNumEvents) can po-

tentially further shorten the detection time. However, adaptive

test termination is inherently less robust and is not considered

in this work.

IV. EXPERIMENTAL STUDY

We implement the proposed approach and conduct experi-

mental studies to evaluate the effectiveness of our proposal

on the memory-leak aging detection in a Linux operating

system. This section describes the experimental setup and

configurations used in this evaluation.

A. Experimental setup

Our test bed is composed of one virtual machine with three

processors (vcpus) and 5 GB RAM. The hypervisor is Xen

4.1.1 and the guest operating system is Linux OpenSuSe 12.2

(kernel 3.4.6-2.10). All experiments are carried out with the

Linux OS configured in runlevel 3. Our experimental plan

considered three main controlled factors: workload intensity,

leak rate, and workload type. These factors are controlled

inside of a synthetic workload generator (SWG) we created for

this purpose. The workload intensity is controlled by varying

the size of memory blocks allocated by SWG. We consider

315315315315

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Workload load generator algorithm
SWG (p, w, th)
p: percentage of leak
w: workload intensity
st: thread status
th: rate of thread creation
rt: run time of application
loop
st = thread_create (Load(p, w));
if (st != ZERO) then break;
if (th == CONSTANT) then

sleeps for 500000 microseconds;
if (th == VARYING) then

if (rt ≤ 30min.) then
sleeps for 500000 microseconds;

else if (rt ≤ 60min.) then
sleeps for 250000 microseconds;

else if (rt ≤ 90min.) then
sleeps for 166666 microseconds;
if (rt ≥ 90min.) then rt = 0;

Function Load (p, w)
t: sleep time in seconds
k: leak activation factor
c: allocated memory address
t = random (1..30);
if (w == LOW) then

c = malloc (32 * random (1..16));
if (w == NORMAL) then

c = malloc (512 * random (1..55));
if (w == HIGH) then

c = malloc (1024 * random (1..200));
if (c == NULL) then thread_exit;
for each position in c

c[position] = 0;
sleeps for t seconds;
k = random(1..100);
if ((p == 0.0) or

(k ≤ (100 - p))) then
free (c);

thread_exit;

three levels of workload intensity, namely low, normal, and

high. The allocation block sizes varied randomly according

to an uniform distribution, ranging from 32 to 512 bytes (for

low workload), 512 to 28,160 bytes (for normal workload),

and 1024 to 204,800 bytes (for high workload), respectively.

We use four percentage values (0%, 0.1%, 0.5% and 1%) to

express the memory leak rates, where 0% represents a leak-

free execution. For all other leaking rates, previously allocated

blocks are unreleased according to the respective percentages.

The workload type, categorized into constant and varying,

controls the variations of the interval of memory allocation

requests. While memory allocations are requested in a regular

interval by constant workload, they have different intervals in

the varying workload (see Algorithm 1).

Algorithm 1 shows the algorithm implemented in SWG.

Given that multi-threading is widely adopted in today’s ap-

plications, and it has a significant impact on the user-level

memory allocator [3], the SWG was designed to create

multiple threads that allocate and release memory blocks

simultaneously. The thread life cycle follows five steps: i)
according to the workload intensity (low, normal, high), it

allocates a specific size of memory block; ii) fills out the

allocated memory to make sure it will be used; iii) wait a

random time (1 to 30 seconds); iv) release the allocated block

with leaking according to the selected leak rate; v) thread ends.

Note that in step (iv), the leak injection is implemented based

on random numbers, drawn from an uniform distribution,

U(1,100), where the allocated memory is released only if the

percentage of leak is equal to zero or when the random number

is greater than the percentage for the selected leak rate.

When the workload type is constant, the SWG creates two

threads per second. In case of the varying workload, the

number of threads increases in a cyclical way, starting in two

threads per second and ending with six threads per second after

two successive increases, then the cycle restarts. The entropy

caused by the simultaneous thread executions depends on the

other parameters, such as the allocation block size and the leak

rate. Also, the life time of a thread is governed for random

values, as observed in real-world applications.

For each test we monitored 66 system metrics in total, every

5 seconds. Based on preliminary analyses, applying machine-

learning algorithms (C4.5 decision tree algorithm) to all of the

monitored metrics, we found that RSS (resident set size) and

HUS (heap space usage) provided the stronger correlation to

the different percentages of leaking investigated. Hence, based

on these practical results and the theoretical analysis presented

in Section II-A, the rest of this paper presents only the relevant

results obtained with these two metrics, RSS and HUS.

In order to have a sample size large enough to observe

the aging effects, each experiment lasted four hours. Our

experimental plan is based on a factorial design [27], so we

evaluate the effect of changes applied to each of the three

above-mentioned factors, in order to measure their effects

on the application’s memory usage. The baseline signal for

experiments is based on the time series obtained through all

executions with 0% leak rate, while we assume the baseline

is obtained through the system test on the previous robust

version.

V. RESULT ANALYSIS

In this section, we present a performance comparison of

the seven techniques (LR, MA, MM, HP, SH, CS, EW, see

Table I) used in our experimental study.

A. Exemplary comparison of divergence charts

Figure 3 compares divergence charts for a single test sce-

nario (load=high; leak rate=0.1%), considering both constant

and varying workloads. For this test case, it can be seen that

SPC techniques (SH, EW, and CS) detect aging faster and with

higher stability, where CS outperforms all the other techniques.

Also, in varying workloads the robustness of all techniques

suffers in comparison with their performance for the respective

tests based on constant workload.

Figure 4 provides a better grasp on the robustness of

the techniques by comparing DivFirstTime and DivLastTime
(same data as in Figure 3). Round markers indicate that both

times were equal (i.e. no false alarms), otherwise bars stretch

between both times. The results corroborate the observed in the

316316316316

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Figure 3. Divergence charts for RSS (left) and HUS (right) under constant (upper) and varying (lower) workloads (all: high load, leak rate 0.1%)

divergence charts, where detection times obtained in constant

workload are better, and also here SPC techniques show better

performance.

The analysis exemplified above was performed for each of

the 36 test scenarios we evaluated.

B. Technique ranking

Based on DivFirstTime and DivLastTime defined in Sec-

tion III-D, we rank the techniques for both constant and

varying workload scenarios. The best techniques are the

top-most in the rank, which are ascending sorted based on

their DivLastTime and accorded to the following rule: If the

DivNumEvents=0, then DivLastTime=DivFirstTime. The ratio-

nale is that techniques with lesser DivLastTime show faster

stability. If competing techniques show the same DivLastTime,
then the DivNumEvents is used as a second sorting criterion

(lower DivNumEvents is better since DivNumEvents counts the

number of false alarms after DivFirstTime). For example, for

techniques T1 (DivFirstTime=2h, DivLastTime=30h, DivNu-
mEvents=3) and T2 (DivFirstTime=10h, DivLastTime=15h, Di-
vNumEvents=5), our comparison protocol considers T2 better

than T1, even T2 presenting higher values for DivFirstTime
and DivNumEvents. The reasoning is that T2 is faster to

produce reliable results than T1, which occurs after 15 hours

of test in T1 against 30 hours in T2.

Based on this comparison protocol, we analyze in details

the three top-most techniques in regard to the rank, for each

test scenario in the both constant and varying workloads. The

rest of this section presents these analyzes, with ranks given

in Table III.
We can observe that CS appears, among the three top-ranked

techniques, in 41% of the tests for constant workload, followed

by EW and HP (see Table III). Note that for the same test

there is more than one occurrence of the same technique (e.g.,

both CS (RSS) and CS (HUS) appeared in normal workload

with 0.5% leak rate). This happens because we apply each

technique twice, using both RSS and HUS. The techniques

not listed are not present among the three best positions. For

varying workload (see Table III), CS and HP again showed

the best results, where both CS and HP are present in 26% of

the tests, followed by SH in 22%. Based on these results, we

conclude that CS and HP, followed by SH and EW, are the

best techniques for the evaluated scenarios.

C. Aging Detection time
Next we compare the best detection times obtained in all

tests in both experiments (constant and varying workloads).

The results are shown in Figure 5. As expected, in general, the

best detection times for constant workloads are lower than in

varying workloads, except for one case (varying load=normal;

leak rate=0.1%). We investigated this specific case and found

no special reason for this difference, so we consider this as an

outlier. For the worst case scenario (load=low; leak rate=0.1%)

in varying workload the detection time is approximately one

hour, and for constant workload sixteen minutes. These results

are very promising when compared to related test times

reported in the literature (e.g., 2.5 hours [8]). Also, for each

317317317317

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Figure 4. First (DivFirstTime) and last (DivLastTime) detection times for constant (left) and varying (right) workloads (all: high load, leak rate 0.1%)

Table III
THE BEST TECHNIQUES AND METRICS OBSERVED FOR THE CONSTANT AND VARYING WORKLOAD TESTS

Constant workload Varying workload
1st 2nd 3rd 1st 2nd 3rd

Low
0.1% CS (HUS) EW (HUS) HP (HUS) CS (HUS) EW (RSS) SH (RSS)
0.5% MM (RSS) CS (HUS) EW (HUS) LR (RSS) CS (HUS) HP (HUS)
1.0% CS (HUS) HP (HUS) EW (HUS) HP (HUS) CS (HUS) SH (HUS)

Normal
0.1% CS (HUS) EW (HUS) HP (HUS) MA (RSS) MM (RSS) HP (RSS)
0.5% CS (RSS) CS (HUS) EW (RSS) CS (HUS) SH (RSS) CS (RSS)
1.0% CS (HUS) HP (RSS) EW (HUS) HP (HUS) LR (HUS) SH (HUS)

High
0.1% CS (RSS) CS (HUS) EW (HUS) SH (RSS) CS (RSS) EW (RSS)
0.5% CS (HUS) HP (RSS) SH (RSS) SH (RSS) CS (RSS) HP (HUS)
1.0% CS (HUS) EW (RSS) EW (HUS) HP (RSS) HP (HUS) LR(HUS)

Figure 5. Best detection times per test (y-axis in minutes)

test we calculate the difference between the best and worst

detection times (see Figure 6). We can see significant differ-

ences, especially for varying low workloads, which means the

best techniques identified by the divergence charts show higher

efficiency for these cases. Particularly, varying low workloads

are the hardest scenarios to fast detecting the investigated

aging effects, because the memory leaks accumulate slowly

at lower workload levels.

D. Comparison of HUS vs. RSS

In order to compare the efficacy of the selected system

metrics, HUS and RSS, we firstly computed how many times,

Figure 6. Difference of best and worst detection times (y-axis in minutes)

per test case, these variables participate in the best detection

times for the ten first techniques in the rank (see Section V-B).

The results are summarized in Figures 7 and 8. For the low

constant workload, HUS shows better in all the tests. On the

other hand, RSS is better for normal load with 1% of leaking

and all the tests with high constant workload. A possible

explanation is that higher workloads make less important the

sensibility advantage provided by HUS. This occurs because

HUS captures the effects of memory leaks some time before

they reflect on the RSS (see Section II). If these effects

accumulate fast (higher workloads), then this advantage may

318318318318

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

Figure 7. HUS vs. RSS for constant workload

Figure 8. HUS vs. RSS for varying workload

disappear. However, we know from the literature (e.g., [28]),

that most residual memory leak problems, undetected during

the test phase, are exactly the ones with lower probability of

occurrences, where HUS demonstrates the better results. For

the tests in the varying workload experiment (see Figure 8),

we have more balanced results, with HUS also demonstrating

better for low workload scenarios.

Next, we compare the best detection times obtained with

both RSS and HUS. Figures 9 and 10 show the results for

constant and varying workloads, respectively. We observed

that HUS contributes for the shorter detection times more

than RSS. The experimental results corroborate our theoretical

discussion presented in Section II.

VI. RELATED WORK

Techniques to mitigate software aging effects are broadly

classified into two categories by the phase of software life cy-

cle, namely development phase and operational phase. Due to

the difficulty of complete removal of aging-related bugs in the

development phase, techniques to counteract software aging

during operational phase are useful and widely investigated.

Software rejuvenation [15], [2] is a recognized approach to

mitigate aging effects which works by resetting or restarting

the application or execution environment when aging effects

Figure 9. Best detection times for constant workload (x-axis in minutes)

Figure 10. Best detection times for varying workload (x-axis in minutes)

are observed. According to [1], this method is currently widely

adopted in many software systems e.g in telecommunication

systems [4], server cluster managers [9], and various others.

An alternative countermeasure is software life-extension. It
attempts to prolong the lifetime of software execution [21].

When users can locate the cause of aging-related bugs in the

operational phase (and they are not contained in a third party

library or a commercial software product), hot-fixes also can

be considered as a measure to eliminate aging [28].

In this paper, we focus on the approach to detect and elimi-

nate software aging in software development phase, especially

in system test. The approach to characterize software aging by

system test is not new, while most of existing aging tests are

intended to be applied in operational phase (i.e., after software

release). Matias et al. introduce a design of experiments to

characterize software aging in web servers, under different

workloads [24]. Controlled experiments such as accelerated

life tests [26] and accelerated degradation tests [25], [30] have

also been proposed and applied to reduce the aging detection

time in operational phase. Another proposal to reduce the test

time for detecting software aging using statistical tests based

on trend-slope estimates is presented in [8]. Bovenzi et al.

present a general procedure to characterize the aging-workload

relationship among different applications [6]. The impact of

319319319319

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

software test on the operational behavior of software systems

suffering from aging is evaluated in [12]. In the same context,

our study also focuses on reducing the aging detection time,

however not only based on a single detection technique but

combining several methods in a judicious way.

The comparison-based approach outlined in Section III-A

was first introduced in [18] and preliminarily evaluated there

for non-automated aging detection via visual comparison of

raw system metrics. In [19] software version comparison is

used for identifying leaking memory allocation sites in Java

programs. Contrary to [18], in this paper we apply advanced

statistical processing techniques in combination with diver-

gence charts in order to achieve a more general framework

for accurate and automated detection of aging.

VII. CONCLUSIONS

In this work, we present a systematic approach to detect

software aging by divergence analysis based on compari-

son with previous version of the same software. Our ap-

proach is general enough to support various signal-processing

techniques combined with different numbers and types of

monitored system metrics (aging indicators). In addition to

aging detection, the introduced divergence charts allow test

engineers to conduct visual analysis, helping them to make

more educated decisions in regard to selection of candidate

techniques and system metrics.

The SPC techniques (CS, SH, EW) and HP filter show

the best and most robust results, with CS and HP excelling

among them, on average. Another important finding is related

to the RSS and HUS comparisons. Since HUS yields better

results for all scenarios with low rate of leak manifestation,

we recommend this metric specially for test plans where the

software under test presents low rates of memory-leak related

failures.

VIII. ACKNOWLEDGMENTS

This work is supported in part by grant AN 405/2-1 entitled

Automated, minimal-invasive Identification and Elimination
of Defects in Complex Software Systems financed by the

Deutsche Forschungsgemeinschaft (DFG), and Brazilian Re-

search Agencies CNPq, CAPES, and FAPEMIG.

REFERENCES

[1] J. Alonso, A. Bovenzi, J. Li, Y. Wang, S. Russo, and Kishor Trivedi,
Software rejuvenation - do IT & Telco Industries use it?, Proc. 4th Int’l
Workshop on Software Aging and Rejuvenation (WoSAR), 2012.

[2] A. Andrzejak, L. Silva, Using Machine Learning for Non-Intrusive
Modeling and Prediction of Software Aging, Proc. 11th IEEE/IFIP
Network Operations and Management Symp. (NOMS), 2008.

[3] J. Attardi, and N. Nadgir, A Comparison of Memory Allocators in
Multiprocessors, 2003.

[4] A. Avritzer and E. J. Weyuker, Monitoring smoothly degrading systems
for increased dependability, Empirical Software Engineering, vol. 2, no.
1, pp. 59–77, 1997.

[5] Y. Bao, X. Sun, and K. S. Trivedi, A Workload-based Analysis of
Software Aging and Rejuvenation, IEEE Transactions on Reliability,
Vol. 54, No. 3, pp. 541-548, 2005.

[6] A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, Workload char-
acterization for software aging analysis, Proc. Int’l Symp. on Software
Reliability Engineering (ISSRE 2011), pp. 240-249, 2011.

[7] B. Cantrill, M. Shapiro, A. Leventhal, Dynamic instrumentation of
production systems, USENIX Annual Technical Conference, 2004.

[8] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo, Memory
leak analysis of mission-critical middleware, Journal of Systems and
Software, Vol. 83, Issue 9, pp. 1556-1567, 2010.

[9] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, Proactive management of software
aging, IBM Journal of Research & Development, Vol. 45, No. 2, pp.
311-332, 2001.

[10] D. Controneo, R. Natella, R. Pietrantuono, and S. Russo, A survey on
software aging and rejuvenation studies, IACM Journal on Emerging
Technologies in Computing Systems (JETC), Vol. 10, No. 1, 2014.

[11] M. Grottke, R. Matias, and K. S. Trivedi, The fundamentals of software
aging, Proc. 1st Int’l Workshop on Software Aging and Rejuvenation
(WoSAR), 2008.

[12] M. Grottke and B. Schleich, How does testing affect the availability of
aging software systems?, Perf. Eval., Vol. 70, pp.179-196, 2013.

[13] J. D. Hamilton, Time Series Analysis, Princeton Univ Press, 1994.
[14] R. Hodrick, E. C. Prescott, Post-war U.S. business cycles: An Empirical

investigation, Journal of Money, vol. 29, No. 1, 1980.
[15] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, Software rejuve-

nation: Analysis, module and applications, Proc. Int’l Symp. on Fault
Tolerant Computing (FTCS 1995), pp. 381-390, 1995.

[16] G. Hunt, and D. Brubacher, Detours: Binary Interception of Win32
Functions, 3rd USENIX Windows NT Symposium, USENIX, 1999.

[17] B. Jacob, P. Larson, B. Leitao, S. A. M M. Da Silva, SystemTap: In-
strumenting the Linux Kernel for Analyzing Performance and Functional
Problems, IBM Redbook, 2008.

[18] F. Langner, A. Andrzejak, Detecting Software Aging in a Cloud Com-
puting Framework by Comparing Development Versions, Proc. 13th
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM 2013), May 2013.

[19] F. Langner, A. Andrzejak, Detection and Root Cause Analysis of
Memory-Related Software Aging Defects by Automated Tests, Proc.
MASCOTS 2013.

[20] A. Macêdo, T. B. Ferreira, R. Matias Jr., The mechanics of memory-
related software aging, Proc. 2nd Int’l Workshop on Software Aging and
Rejuvenation (WoSAR), 2010.

[21] F. Machida, J. Xiang, K. Tadano and Y. Maeno, Software life-extension:
a new countermeasure to software aging, Proc. 23rd Int’l Symp. on
Software Reliability Engineering (ISSRE2012), pp.131-140, 2012.

[22] F. Machida, A. Andrzejak, R. Matias Jr., E. Vicente, On the effectiveness
of Mann-Kendall test for detection of software aging, Proc. 5th Int’l
Workshop on Software Aging and Rejuvenation (WoSAR), 2013.

[23] R. Matias Jr., B. Evangelista, and A. Macedo, Monitoring memory-
related software aging: an exploratory study, Proc. 4th Int’l Workshop
on Software Aging and Rejuvenation (WoSAR), 2012.

[24] R. Matias Jr., P. J. Freitas Filho, An experimental study on software
aging and rejuvenation in web servers, Proc. 30th Int’l. Computer
Software and Applications Conference, pp. 189-196, 2006.

[25] R. Matias Jr., Pedro A. Barbetta, K. S. Trivedi, and P. J. Freitas Filho,
Accerelated degradation tests applied to software aging experiments,
IEEE Transactions on Reliability, vol. 59, no. 1, pp. 102-114, 2010.

[26] R. Matias Jr., K. S. Trivedi, and P. R. M. Maciel, Using accelerated
life tests to estimate time to software aging failure, Proc. Int’l Symp.
Software Reliability Engineering (ISSRE2010), pp. 211-219, 2010.

[27] D. C. Montgomery, Introduction to statistical quality control, John Wiley
& Sons, 1996.

[28] K. S. Trivedi, R. K. Mansharamani, D. Kim, M. Grottke, M. Nambinar,
Recovery from Failures Due to Mandelbugs in IT Systems, Proc. Pacific
Rim Int’l Symp. on Dep. Computing (PRDC2011), pp. 224-233, 2011.

[29] J. Yang and V. Makis, On the performance of classical control charts
applied to process residuals, Computers and Industrial Engineering, Vol.
33, no. 3-4, pp. 121-124, 1997.

[30] J. Zhao, Y. Jin, K. S. Trivedi, and R. Matias Jr., Injecting memory leaks
to accelerate software failures, Proc. Int’l Symp. on Software Reliability
Engineering (ISSRE 2011), pp. 260-269, 2011.

[31] P. Zheng, Q. Xu, and Y. Qi, An advanced methodology for measuring
and characterizing software aging, Proc. 4th Int’l Workshop on Software
Aging and Rejuvenation (WoSAR), 2012.

320320320320

Authorized licensed use limited to: Concordia University Library. Downloaded on May 14,2024 at 15:49:22 UTC from IEEE Xplore. Restrictions apply.

